

The 9th Asian Particle Technology Symposium

Engineering a Sustainable Future

Sydney, 1 – 4 December 2024 Amora Hotel Jamison Sydney

Jointly organised by

Sponsors

Engineering

Australian Government Australian Research Council

PVRS ARC Research Hub for PhotoVoltaic Solar Panel Recycling and Sustainability

Shen Lab of <u>Pro</u>cess <u>M</u>odelling and <u>O</u>ptimization of Reacting Flows <u>http://www.promo.unsw.edu.au/</u>

Silver

Contents

Welcon	me Messages	1-
Organis	ising Committee	2 -
Sympos	sium Information	3 -
Plenary	y Speakers	6 -
Keynot	te Speakers	16 -
Prograi	m at a Glance	18 -
Plenary	y Lecture	22 -
Technie	cal Session	23 -
T1.	Modelling and simulation	23 -
T2.	Modelling and simulation of multiphase flow	25 -
Т3.	Gas-solid flow: microscopic to macroscopic	28 -
T4.	Characterization & evaluation and control of particle dispersions	29 -
T5.	Powder handling: flow, mixing, and compaction	30 -
Т6.	Particle synthesis and functionalization	31 -
Τ7.	Particle technology in low carbon metallurgy & recycling industries	33 -
Т8.	Aerosol & interfacial science of particle	34 -
Т9.	Particle technology for medical and pharma	35 -
T10.	Particle technology for energy and power sources	36 -
T11.	Recycling and waste management	37 -
T12.	Frontiers in powder technology	38 -
T13.	Special session of ARC hub for SPDC	40 -
Panel D	Discussion	41 -
P1. Fe	emale in Particle Technology	41 -
P2. Gr	rant Writing	41 -
P3. Ea	arly Career Researcher in Particle Technology	41 -
Poster	Session	42 -

Welcome Messages

Dear Colleagues,

It is a great honour and privilege to welcome you to the APT2024.

This year's theme, "Engineering a Sustainable Future," reflects our collective commitment to advancing technologies that promote environmental stewardship and sustainable development.

As we gather here as an international particle technology community, we have a unique opportunity to share our knowledge, exchange innovative ideas, and collaborate on solutions that address some of the most pressing challenges of our time. Your participation and contributions are invaluable to the success of this symposium and to the broader goal of creating a sustainable future for all.

Professor Yansong Shen

Symposium Chair

Professor Alex Yip Symposium Chair

I look forward to the insightful discussions, groundbreaking research presentations, and forging new partnerships that will emerge from this event. Together, we can significantly impact the world through our dedication to particle technology and sustainable engineering.

We sincerely thank all our sponsors for their generous support and, of course, all delegates for participating in the APT2024.

Sydney is an attractive world-class city where a vibrant lifestyle meets the natural environment. I trust that you will enjoy your time here with us.

Let us inspire and be inspired!

Gansong Shen

Professor Yansong Shen Chair of the APT2024 President of Australasian Particle Technology Society University of New South Wales, Australia

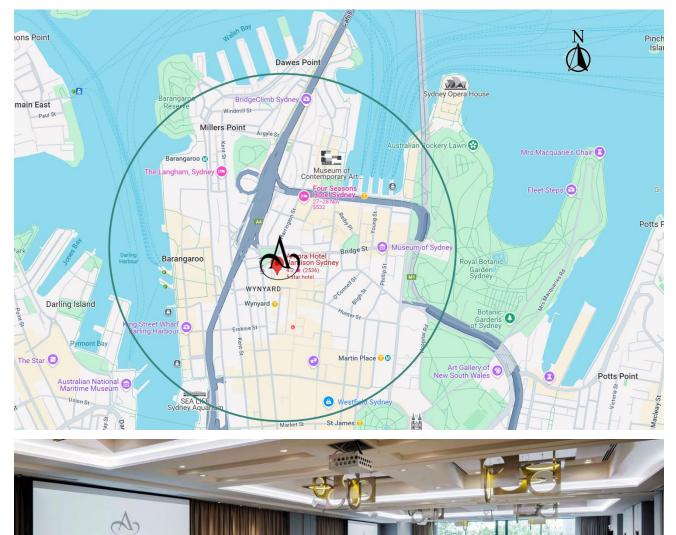
Ngā mihi,

Professor Alex Yip Chair of the APT2024 Vice President of Australasian Particle Technology Society University of Canterbury, New Zealand

Organising Committee

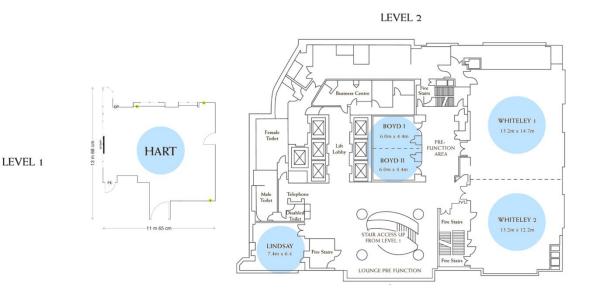
Chairs	
Yansong Shen	University of New South Wales, Australia
Alex Yip	University of Canterbury, New Zealand
Local Organising Committee	
Shibo Kuang	Monash University, Australia
Yiran Liu	University of Western Australia, Australia
Cordelia Selomulya	University of New South Wales, Australia
Shuang Song	University of New South Wales, Australia
Zhouzun Xie	University of New South Wales, Australia
Yuting Zhuo	University of New South Wales, Australia
International Organising Com	mittee
Chairperson:	
Satoru Watano	Osaka Metropolitan University, Japan
Members:	
Tawatchai Charinpanitkul	Chulalongkorn University, Thailand
Clive Davies	Massey University, New Zealand
Wan Ramli Wan Daud	Universiti Kebangsaan Malaysia, Malaysia
Hongchen Gu	Shanghai Jiao Tong University, China
Hee Dong Jang	Korea Institute of Geoscience and Mineral Resources
Hsiu-Po Kuo	National Taiwan University, Taiwan
Nikolai Lyakhov	Institute of Solid State Chemistry, Russian Federation
Tatsushi Matsuyama	Soka University, Japan
Vu Ba Minh	Ho Chi Minh City University of Technology, Vietnam
Pradip	Tata Research Development and Design Centre, India
Tjokorde Walmiki Samadhi	Institut Teknologi Bandung, Indonesia
Jadambaa Temuujin	Mongolian Academy of Sciences, Mongolia
Reginal B.H. Tan	National University of Singapore, Singapore
Fei Wei	Tsinghua University, China
International Advisory Comm	nittee
Kuniaki Gotoh	President of the Society of Powder Technology, Japan (SPTJ), Okayama University
Yong Kang	President, Korea Certification Institute for GR (Ministry of Industry, Trade & Resources)
Toshio Kakui	President of the Association of Powder Process Industry and Engineering, Japan (APPIE), TUAT
APT Permanent Conference	Secretariat
Miyuki Kita	The Society of Powder Technology, Japan (SPTJ)

Symposium Information


DATE

1-4 December, 2024

VENUE


Amora Hotel Jamison Sydney

11 Jamison Street, Sydney, NSW 2000

WIFI ACCESS

Wifi Details:

Username: Amora Jamison

Password: Conference

TRANSPORT INFO

Amora Hotel is a 4-minute walk from Wynyard Station (York Street Exit) Amora Hotel is a 2-minute walk from Bridge Street Light Rail station (L2 or L3)

Transport to Amora from the Airport

From Sydney International and Domestic Airport (approx. 14km from the hotel) there are a few commute options available:

Train:

It will take approximately 25 minutes to arrive at Wynyard Station which is right next to the hotel. Take the York Street exit and turn right, you are now heading north. Cross over on Margaret Street and continue to the next street which is Jamison Street. Turn right onto Jamison Street and about 250 metres down on the right hand side is the hotel – 11 Jamison Street. A regular one-way train trip from Sydney airport to the city centre costs approx. AU18.00 per person.

Shuttle Bus:

The hotel does not operate a shuttle service to and from the airport. Should you require a shuttle bus service from the hotel to the airport, we recommend you book directly with www.redy2go.com.au. Cost approx. AU\$16.00 per person, one way.

Taxi:

It can take around 35 to 45 minutes from the airport to the hotel, and can cost anywhere from AU\$50.00 to AU\$60.00 (depending on traffic) for up to 2 people with 1 suitcase each way. A Maxi Taxi is recommended for 4 to 5 people (extra charges apply). Taxi ranks are located in front of all airport terminals.

CAR PARKING INFO

Amora Hotel Jamison Sydney has 80 car spaces, located directly underneath the hotel and operated by Care Parking. Guests can enter this carpark by turning left from George Street on to Jamison street (second secure parking entrance towards end of street).

Self-Parking Parking for conference attendees is at AU\$67.00 per car per 24 hours.

To receive this rate, please make sure the parking ticket is validated at the reception before leaving. For attendees that are staying in the hotel, and require multiple entry, please validate the ticket during the check in process.

Valet Parking is offered at AU\$85.00 per car per 24 hours.

Vehicles with wheel size of 22 inches and above will be unable to Valet Park.

Access is from the car park under Amora Hotel and there is more info on this link: <u>https://www.carepark.com.au/find-a-care-park/amora-hotel-jamison-sydney/</u> which you can also access via the QR code below:

Both options allow for multiple entries and exits. Furthermore, the car park features a height clearance of 2 meters.

Plenary Speakers

(Alphabetical order)

ABSTRACT

Prof. Rose Amal

The University of New South Wales, Australia

Engineering Nanoparticles for Harvesting Solar Energy for Chemical and Fuel

The push for sustainable energy solutions has led to significant progress in particle technology as Particle technology plays a vital role across several industries essential for decarbonisation, from the mining and processing of essential minerals like lithium and cobalt to the purification of these materials for use in advanced applications. These steps involve complex techniques like flotation and magnetic separation, and precise particle size management, which are crucial for enhancing efficiency and environmental sustainability.

Furthermore, the field of catalysis has greatly benefited from nanoparticles, especially in designing nanoparticles to better capture and convert solar energy into valuable chemicals and fuels through solar-driven chemical reactions. The unique properties of nanoparticles, such as their large surface area and tunable surface and electronic properties, boost catalytic performance and selectivity, making the conversion of solar energy more effective. Our research spans the entire solar spectrum, employing UV and visible light for photocatalytic reactions and infrared radiation for thermal catalysis. These processes are essential for driving reactions such as water splitting to produce hydrogen, CO_2 reduction to generate methanol, and the nitrogen fixation needed for ammonia production. Each of these chemicals plays a critical role in the energy sector: hydrogen as a clean fuel, ammonia as a vital component in agriculture and energy storage, and methanol as a versatile fuel and industrial feedstock.

In our research group, nanoparticles are synthesised using various methods, each imparting distinct characteristics to the catalysts. Techniques such as flame synthesis, hydrothermal precipitation, and electrodeposition are employed, each providing unique control over the catalysts' properties. Flame synthesis, characterised by high temperatures and brief residence times, typically yields catalysts with more defects and smaller particle sizes. These properties are conducive to certain photo-electro-chemical applications where high reactivity and large surface areas are beneficial. In contrast, hydrothermal precipitation, involving longer durations under pressure, produces more crystalline structures, enhancing the stability and conductivity of the catalysts for sustained energy conversion processes.

This presentation will explore how engineering nanoparticles and atomic clusters has revolutionised solar energy conversion. This includes discussing the integration of solar-thermal reactors with PV-electrolysers and presenting real-world examples that demonstrate the scalability of these technologies for global energy solutions.

BIOGRAPHY

Professor Rose Amal is a Scientia Professor in the School of Chemical Engineering, UNSW, Sydney. She is Co-Director of ARC Training Centre for the Global Hydrogen Economy and Lead of NSW Powerfuel including H_2 Network. She is Co-Editor in Chief of Applied Catalysis B: Environment and Energy. Her research focuses on designing innovative catalysts to harness solar energy via photocatalysis, electrocatalysis, and thermal catalysis, converting water, air, or waste into valuable chemicals and fuels such as hydrogen, ammonia, and methanol.

Professor Rose Amal has received numerous prestigious awards including CHEMECA medalilst (2021) and named as 2019 NSW Scientist of the Year. She is a Fellow of Australian Academy of Technology and Engineering (FTSE), a Fellow of Australian Academy of Science (FAA), Fellow of Royal Society NSW (FRSN), and Honorary Fellow of Engineers Australia. She has received the nation's top civilian honour – the Companion of the Order of Australia - for her service to chemical engineering, particularly in the field of particle technology, through seminal contributions to photocatalysis, to education as a researcher and academic, and to women in science as a role model and mentor.

ABSTRACT

Prof. Debra Bernhardt

The University of Queensland, Australia

Heat Transport across Interfaces: Challenges and Insight from Simulation

Heat transport in particulate systems is of often critical to the functioning of the system. When particles are immersed in a fluid, there are various processes that are relevant including particle-particle heat transfer, the thermal conductivity of the particles and fluid, coupling of heat transport to flow, and thermal transport at interfaces. One process of particular interest is thermal transport from heated nanoparticles in a fluid.

Molecular simulations provide a useful approach to analyse such systems since they allow them to be probed without disturbing the system. This is particularly relevant when temperature profiles or heat fluxes in nanopores are being probed, as the system is easily disturbed during the experimental measurement of these properties. We will present results of molecular dynamics simulations that we have carried out with fluids in nanopores where we are interested in determining the temperature profile, interfacial thermal resistance and heat flux. Results for simple slit nanopores and also pores with more complex wall structures will be discussed. The challenges that needed to be overcome to calculate the temperature profile when the molecules have geometric constraints will be discussed, and the new approach we have developed will be outlined. Our results also show how the thermal properties vary with the composition of the fluid. The results have wide-ranging applications in nanotechnology and biological systems.

BIOGRAPHY

Professor Debra Bernhardt is internationally recognised for her contributions to the development of nonequilibrium statistical mechanics and thermodynamics including far-from-equilibrium fluids and confined fluids. She is a Fellow of Australian Academy of Science and the Royal Australian Chemical Institute and an ARC Australian Laureate Fellow. Professor Bernhardt's 30 years of research experience includes appointments at the University of Basel, Switzerland; the Australian National University; and Griffith University, where she was founding director of the Queensland Micro- and Nanotechnology Centre. Professor Bernhardt's research interests focus on the use of a range of theoretical and computational approaches to develop a fundamental understanding of the behaviour of matter, and application of these approaches to a wide range of problems including transport in nanopores, fluctuation phenomena, design of materials, gas separation, energy storage and conversion.

ABSTRACT

Prof. Rajesh Davé

New Jersey Institute of Technology, USA

Enhanced Properties of Powders and Blends through Particle Engineering

Our research focuses on developing fundamental understanding of particle properties and their interactions at the nano and micro scales, along with translating that knowhow to innovate powder based solid form products. Recent work has specifically targeted pharmaceutical industry with a hope to satisfy unmet industry and patient needs. Unique contributions that will be discussed in this presentation include predictive property enhancements for fine powders, their blends, and compressed tablets through particle engineering, potentially enabling digital product design and manufacturing of high-quality, low-cost, smaller tablet products, as well as process understanding via multi-scale modeling. We have leveraged these recent fundamental advances to develop innovative processes and products spanning important areas such as; overcoming the difficulties in processing pharmaceutical powders due to their high cohesion via solventless mechanical coating of nanoparticles on their surfaces; use of modeling tools for enhanced process and product understanding; and improved bioavailability of poorly water-soluble drugs. Highlights of some of these topics will be presented including recent advances uncovering the role of fine particle agglomeration on powder behavior and power-law relationship between agglomeration, flowability, and packing where the granular Bond number could be used as a dimensionless scaling parameter. The synergistic enhancements in the blend or formulation properties will be highlighted including blend uniformity, flowability, compaction properties, and enhanced capability for direct blend direct compaction (DB-DC) tableting at either high or very low drug loadings.

BIOGRAPHY

Prof. Rajesh Davé Fellow of the American Institute of Chemical Engineers (AIChE), American Association of Pharmaceutical Scientists (AAPS), and National Academy of Inventors (NAI) is a Distinguished Professor of Chemical and Materials Engineering at New Jersey Institute of Technology (NJIT). He has granted 38 PhDs to his students, seven of those have been placed in US academia. His research contributions include 200+ journal papers (16,200+ Google citations, H-Index 68), and 23 issued patents. He has received numerous awards, including 2022 American Institute of Chemical Engineering (AIChE) PD2M Award for Outstanding Contribution to QbD for Drug Product, 2016 Thomas Alva Edison Patent Award, and 2015 AIChE Particle Technology Forum Fluidization Lectureship. He is currently the U.S. Executive Editor of Advanced Powder Technology, and the Past Chair of the AAPS Manufacturing Science and Engineering Community (MSE).

ABSTRACT

Prof. Kevin Galvin

University of Newcastle, Australia

How to Build a Particle Separator

This presentation addresses one of the simplest but most significant separations in the minerals industry, the separation of particles based on density. Invariably, the value of the mineral correlates with the metal content, and hence the density of the particles. We must first understand the nature of the challenge. The limits of separation are governed by the inevitable balance between particle segregation and dispersion within the fluid. Differential settling is the primary source of segregation, governed by the interplay between the fluid hydrodynamic forces that act on the particle, and the body force arising from gravity and buoyancy, referred to here as the net weight force of the particle in the fluid.

This lecture introduces the basic geometry of the Reflux Classifier, a system of parallel inclined channels above a conventional, vertical, fluidized bed. This system was motivated by the remarkable benefits of inclined settling, the so-called Boycott Effect, combined with a conventional fluidized bed. There was a light bulb moment in the act of the original invention that such a system carried many desirable features. However, there was no knowledge concerning the physical dimensions needed to achieve separations in minerals processing. The first full-scale Reflux Classifier had an inclined channel spacing of z=60 mm, and was even tested using a spacing of z=120 mm. The channel spacing became the primary focus of the technology in the early years. There was the natural resistance to considering a relatively small channel spacing of less than z=10 mm given the perception of the unforgiving nature of the minerals industry.

"How to build a particle separator", is a question that has plagued me for more than twenty years. The separator receives a mixture of particles that must be untangled into two streams. Significant knowledge on this novel system was assembled through numerous PhD studies, but there has also been a series of step changes that have led to new trajectories for further advancement. Fundamentally, a high-performance separator must function like an algorithm in computational fluid dynamics. The entire solution rests on the provision of robust boundary conditions!

BIOGRAPHY

Kevin Galvin is the inventor of the Reflux Classifier used in gravity separation of fine mineral particles. With over 240 installations around the world, the technology has been used to beneficiate iron ore, mineral sands, metallurgical coal, potash, chromite, lithium, and other base metal oxides. New innovative systems are emerging including the Reflux Flotation Cell, Graviton, and a novel agglomeration technology. Kevin Galvin is a Laureate Professor at the University of Newcastle, Australia. He is a Fellow of the Australian Academy of Science and Australian Academy of Technology and Engineering and previous recipient of numerous awards including the Ian Wark Medal, ATSE Clunies Ross Award, and Antoine Gaudin Award in mineral processing. He is Director of the ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals.

Prof. Liejin Guo

Xi'an Jiaotong University, China

Intensification of Supercritical Water-Particle Reacting Flow

ABSTRACT

Supercritical water-coal multiphase reacting flow can achieve multigoals of clean, low-carbon, and efficient for hydrogen production and power generation. Strengthening the hydrogen production from the supercritical water gasification of coal can further increase conversion efficiency. However, this process involves strongly coupled physical and chemical processes across multiple scales, making it difficult to control by adjusting a single set of parameters. Supercritical water gasification process intensification of coal from multiple scales is investigated. This work reveals the flow pattern distribution and evolution of the transcritical jet, and proposes that the environmental turbulence can promote the shapeless plume, achieving rapid heating of coal particles and side reactions suppression. A trans-scale kinetic model of coal particles is established. The rate-limiting step is found and relative enhancement methods is revealed. The invention of the swirl distributor with cone-shaped structure in the dense phase region has maintained the appropriate reaction temperature in the reaction zone. This work indicates that heat and mass transfer resistance can be reduced by organizing flow fields to decrease the irreversibility of the process. The above design idea is used for designing a demonstration system, and reduces the complete gasification temperature to be below 670°C. It paves the way for cheap material selection and low cost hydrogen production and power generation.

BIOGRAPHY

Prof. Liejin Guo is an Academician of the Chinese Academy of Sciences (CAS), Academician of the World Academy of Sciences for the advancement of science in developing countries(TWAS), Professor of Xi'an Jiaotong University, an prestigious expert in engineering thermophysics and energy utilization, one of the principle investigators on multiphase flow in power engineering and hydrogen energy discipline in China, the first batch of distinguished professors of Yangtze River scholars of the Ministry of Education of China in the field of thermal energy engineering, the pioneer and founder of China's first discipline and specialty of New Energy Science and Engineering, the Chief scientist of the Major State Basic Research Development Program of China (973 Program), the Principal Scientist of Oversea Expertise Introduction Center for Discipline Innovation ("111 plan") of the State Administration of Foreign Experts Affairs, the Principal Scientist of the key R & D plan of the Ministry of science and technology, the Principal Scientist of the Basic Science Center Program for Order-ised Energy Conversion of the National Natural Science Foundation of China, and the director of State Key Laboratory of Multiphase Flow in Power Engineering.

Professor Guo has conducted extensive research in multiphase flow and heat & mass transfer in energy power systems, multiphase flow in petroleum engineering, theoretical and technological research on high-efficiency renewable development and utilization of new energy, as well as hydrogen science and technology. As the first awardee, he has been won the second prize of National Natural Science Award twice, the second prize of the National Natural Science Invention Award once, and the first prize from provinces or Chinese ministries seven times. He also received the inaugural National Award for Excellence in Innovation. His invention, the poly-generation technology of the Coal Supercritical Water Gasification for Hydrogen Production and Power Generation was granted as one of the 'The Ten Major Science and Technology Advances of China's Colleges and Universities'. He was honored with two Special Prize of Teaching Achievements in Shaanxi Province in 2019 and 2023, and the First Prize of National Teaching Achievements (Undergraduate) in 2022. Additionally, he has been recognized as a Highly Cited Researchers, World's Top 2% Scientists, Highly Cited Chinese Researchers and Best Scientists Ranking etc.

Prof. Hidehiro Kamiya

Tokyo University of Agriculture and Technology, Japan

Nano and Fine Particles Dispersion Behavior Control Based on Interface Structure Design, and its Application for Circular Economy

ABSTRACT

Aggregation and dispersion behavior control of nano and fine particles is one of the most important science and technology in the field of functional materials processing, such as fine ceramics, polymer composites and Li ion battery electrodes. Molecular and nanometer scaled interface structure control by using various surface modification methods, such as organic ligands and polymer dispersant on particles are developing to control above behavior in liquids.

Firstly, we will introduce some investigation about design and synthesis of novel amphiphilic organic ligands with various molecular structure and discovered the optimum structure to disperse nanoparticles into various polar and nonpolar organic solvents. Since the optimum organic structure of ligand for dispersion depend on the kind of organic solvent and matrix materials, ligand exchange process is generally applied. For this process, new characterization methods of adsorbed "strength" between the surface on nanoparticles with different materials and ligand adsorption group were developed by using simple method and NMR.

Based on these above approaches included ligand structure design for different nanoparticles dispersion behavior control in different solvent and solid matrix, we focus on the application for circular economy systems, recently. By the well dispersion of conductive nanoparticles into strong adhesive raw organic molecules for automobiles and other large equipment, we achieved easy decomposition of adhesive by high voltage electric pulse and separated different materials. I will introduce the outline of this new project.

In the case of fine particles, which size are larger than 100 nm in diameter, various kinds of polymer dispersant have been applied to control dense suspension behavior in ceramic processing and Li-ion battery. Colloid probe AFM method has been applied to discuss the action mechanism of polymer dispersant by using original probe preparation method.

Furthermore, fine ash particles adhesion and ash layer growth phenomena hindered stable operation of various energy systems using biomass and waste for sustainable energy systems. Original characterization systems of ash adhesion phenomena at high temperature conditions and analyzing methods have been developed. Based on the fundamental characterization method, the adhesion behavior control by using nanometer scale structure design between fine ash particles have been investigated.

BIOGRAPHY

Dr. Hidehiro Kamiya was Vice president, Trustee, Tokyo University of Agriculture and Technology, Japan from April 2020 to March 2024. He was Dean of Graduate school of Bio-Applications and Systems Engineering, 2013-2019, and Dean of Global Innovation Research Institute, 2017-2020. He is editorial board member of "Powder Technology" from 2002. He received B.C. degree (1981) and PhD (1986) in Department of Chemical Engineering at Nagoya University, Japan. He currently works as a professor at Waseda university from April 2024. He has published over 260 papers (211 WoS papers) about fine and nano-particles aggregation and adhesion behavior characterization and control. His fine particle science and technology has also been applied in various fields, for examples, ceramics, materials, energy and environmental, DDS, cosmetics, pigment, toner and produced many collaboration with industries. Professor Kamiya has received various award included the SCEJ Award for Outstanding Research (2007), Technology (2016) Achievement, and Society of Chemical Engineers, SCEJ Award (2022), Japan, and KONA award (2023)

Prof. Jinghai Li

Institute of Process Engineering, Chinese Academy of Sciences, China

How Science Can Better Support Tackling Global Challenges

ABSTRACT

This talk will first discuss the interplay between global challenges and knowledge gaps, believing that tackling global challenges is now hindered seriously by the missing links of knowledge at the mesoscale of different levels and that filling knowledge gaps needs the driving forces from tackling global challenges. Then, three common features for all challenges will be discussed respectively by taking examples of SDGs, carbon neutrality and human health et al. the first common feature is that these challenges are all in compliance with the principle of compromise in competition and multi-objective optimization. The second is the multilevel mesoscale characteristics of complexity. The third is the dependence of global behaviors on all involved levels of systems. The presentation will be concluded with prospective on advancing the mesoscale complexity at different levels.

BIOGRAPHY

LI Jinghai, chemical engineer, was elected Member of the Chinese Academy of Sciences in 1999. He is a Member of The World Academy of Sciences as well as a Foreign Fellows of the Swiss Academy of Engineering Sciences, the Royal Academy of Engineering (UK), and the Australian Academy of Technology and Engineering, and the Royal Society (UK). He mainly works on the quantified design and amplification of particle-fluid two-phase reaction systems. He established the energy-minimization multi-scale (EMMS) method, which has been successfully applied in complex system simulation and industrial process simulation. In addition, he developed the multi-scale computing model and proposed the concept of mesoscience.

Prof. Gus Nathan

The University of Adelaide, Australia

Emerging High Temperature Particle Reactor Technology for the Net-Zero Industrial Transition

The transition to net-zero-emission operation for processes such as iron, alumina, cement and lime will lead to substantial change in both the design the operation of the high temperature reactors used to undertake processes such as iron ore reduction and alumina calcination. New types of flash and fluidised bed reactors are emerging because of their greater potential to accommodate electrification, hydrogen and/or direct capture of CO_2 , together with the opportunity to reduce costs through increased efficiency, shorter residence time and increased circularity. However, substantial changes to process operation will be needed to accommodate these new pathways, which include additional pre-processing of the ores, such as through new beneficiation technologies, together with changes to reactor gaseous atmospheres and operating temperatures. New particle reactors are also expected to play a role in other emerging technologies for processes such as direct air capture. This transition of particle reactor technology will be summarised.

To achieve the scale of this transformation in these processes by 2050 will also require a step-change in the predictive capability of the numerical engineering models employed in the development, upscaling and design of these reactors. This is because current engineering models employ many simplifying assumptions owing to the complexity of the multi-phase fluid-dynamical transport and reaction phenomena within them, which are coupled, non-linear and multi-scale. Furthermore, the complex and unique properties of each ore means that each process is bespoke and must be purpose-designed for each plant. Whilst the current engineering models that have been progressively refined over the years are reasonable for current operation, their reliability in the new environments of future reactors is much lower. Furthermore, these new mode of operation for these technologies is largely unproven at commercial scale so that a high degree of confidence is needed to avoid costly operational challenges that could potentially occur from undesired phenomena such as blockages and reduced production from particle stickiness. New understanding is therefore needed for each of the underlying transport and reaction processes in these new operating regimes, together with new data for model development and validation. It is vital to avoid such challenges, which would otherwise slow down the roll out of these technologies through the sector. The presentation will therefore also address recent progress in the development of both the understanding and of the numerical modelling tools that will be needed for the low-carbon transition. These advances are occurring both in the optical diagnostic techniques used to provide insights and quantitative data sets, and in the emergence of physics-informed deep learning methods.

BIOGRAPHY

ABSTRACT

Gus Nathan is the founding Director of The University of Adelaide's Centre for Energy Technology. He has led the centre in developing its vision, identifying priorities and devising and implementing a strategic plan. Under his leadership the Centre has identified novel approaches with strong potential to make a breakthrough in the delivery of low-cost, clean energy technologies and has engaged with partners spanning industry, international research institutions and government agencies.

Professor Nathan is an ARC Discovery Outstanding Researcher who specialises in thermal energy engineering in systems supplied by solar, geothermal and the combustion of fossil and bio-fuels, but also works with hydrogen, wind and wave power. His recent work has focussed on novel approaches to integrate and optimise these different energy sources. He has played a leading role in the development of six patented technologies. He was principal leader of the Chief Design Team for the award winning fuel and combustion system for the Sydney Olympic Relay Torch and was co-inventor of the patented combustor that was subsequently also used in the torch and Stadium flame for the Athens Games. He has also jointly led the development of low NOx "Gyrotherm" burner being commercialised by partner FCT Combustion in rotary cement kilns and in the development of a technology to enhance the capture of ultra-fine particles and mercury in partnership with Indigo Technologies. A current focus is the development of novel hybrid power systems that combine solar energy with combustion or gasification, with one patent pending in this field.

Prof. Raffaella Ocone

Heriot-Watt University, UK

The Dynamic Behaviour of Wet Fluidization

ABSTRACT

A wide range of industrial processes concerns with processing and handling wet particles. For example, in power generation, oil/tar is formed in low-temperature regions of biomass thermal conversion reactors. In some circumstances, small amounts of liquid are added into processes involving particles, such fluidized bed. In physical processing, liquid is commonly sprayed into mixers or fluidized beds for particle coating and granulation. Catalyst particles can be adequately wetted to improve the performance of trickled-bed reactors; in fluidized catalytic cracking reactors, the sprayed droplets introduced through atomisers may spread on the surface of hot catalyst particles and vaporize to enhance the cracking efficiency. To produce high-performance polyethylene, multiple zones of different temperature are obtained by injecting condensated liquid into the fluidized bed.

Even small amounts of liquid can give rise to strong cohesion for granular materials, imposing a marked impact on fluidization and mixing in fluidized reactors. The liquid presence in solid processing systems results in changing the inter-particle forces and energy dissipation at collisional contacts.

The paper gives an account of wet fluidisation, starting from the observed behaviour then describing it by modelling the dynamics of the liquid bridges that create between particles. A detailed account of the formation and rupture of liquid bridges is provided through the introduction of a new liquid bridge evolution model to take into account the effects of particle relative velocity on the lifecycle of the liquid bridge. The new model introduces a critical parameter, namely the normal relative velocity between particles, v_{nc} , to control the liquid bridge force between particles, resulting in a monotonous increase of the liquid bridge force when v_{nc} changes from 0 to ∞ m/s. A measurement of one single bubble injected into a lab-scale incipiently fluidized bed from the literature is used for model validation.

The CFD-DEM simulations show the ability of the proposed model to provide a good estimation of the bed behaviour for various liquid loading and liquid viscosities. The hydrodynamic changes due to introduction of the liquid are correctly predicted. Extensions of the model are presented and the results from the simulations are compared with experiments. A simple analytical model to estimate the optimal range of v_{nc} is presented providing a complete methodology to study wet systems of particles.

BIOGRAPHY

Raffaella Ocone OBE, FREng, FRSE holds degrees from the Università di Napoli, Italy, and Princeton University, USA. She is the Chair of Chemical Engineering at Heriot-Watt University, UK, and Guest Professor at Ruhr University Bochum, Germany. Currently, she serves as the Deputy President of the Institution of Chemical Engineers (IChemE) and will become the 84th President in 2025.

In 2007, Raffaella was honoured with the title of Cavaliere by the President of the Italian Republic. In 2019, she was recognised as one of the top 100 Most Influential Women in the Engineering Sector by Inclusive Boards, in partnership with the Financial Times. In 2017, she became the inaugural "Caroline Herschel Visiting Professor" in Engineering at Ruhr University Bochum, Germany, in recognition of her contributions to engineering ethics.

Raffaella's research primarily focuses on modelling multiphase reactive systems, with a particular emphasis on developing responsible technologies in the energy sector. Her current work centres on advancing low-carbon hydrogen production.

Prof. Aibing Yu

Monash University, Australia

Simulation and Modelling of Particulate Systems

Particle science and technology is a rapidly developing interdisciplinary research area with its core being the understanding of the relationships between micro- and macro-scopic properties of particulate/granular matter – a state of matter that is widely encountered but poorly understood. The macroscopic behaviour of particulate matter is controlled by the interactions between individual particles as well as interactions with surrounding gas or liquid and wall. Understanding the microscopic mechanisms in terms of these interaction forces is therefore key to leading to truly interdisciplinary research into particulate matter and producing results that can be generally used. This aim can be effectively achieved via particle scale research based on detailed microdynamic information such as the forces acting on and trajectories of individual particles in a considered system. In the past two decades or so, such research has been rapidly developed worldwide, mainly as a result of the rapid development of discrete particle simulation technique and computer technology. This talk presents an overview of such developments, focusing on those in our laboratory "SIMPAS". It is demonstrated through examples that the study of small particles is well linked to many challenging problems in big science and particle scale approach has gradually emerged to be a powerful tool not only for fundamental research but also for engineering application. Needs for future development are also discussed.

BIOGRAPHY

ABSTRACT


Professor Aibing Yu specialized in process metallurgy, obtaining BEng in 1982 and MEng in 1985 from Northeastern University, PhD in 1990 from University of Wollongong, and DSc in 2007 from the University of New South Wales (UNSW). He is currently Sir John Monash Distinguished Professor, Pro Vice-Chancellor (China Strategy) and Foundation President (Suzhou), Monash University. He is also ARC Research Hub for Computational Particle Technology (continued as ARC Research Hub for Smart Process Design and Control).

He is a world-leading scientist in particle/powder technology and process engineering. He has made many significant contributions and is recognised as an authority in particle packing and flow, particulate and multiphase processing, and simulation and modelling. He has authored/co-authored >1,300 publications (including >900 collected in the Web of Science), delivered many invited plenary/keynote presentations at various international conferences, and graduated >50 postdoc fellows and >150 PhD students. He is Executive Editor of Powder Technology, Regional Editor of Granular Matter, and on the editorial board of ~20 learned journals.

He is a recipient of numerous prestigious awards/fellowships including ARC Australian Professorial and Federation Fellowships, Josef Kapitan Award from Iron and Steel Society, Ian Wark Medal from Australian Academy of Science, Exxon Mobile Award from Australian and New Zealand Federation of Chemical Engineers, Shell Thomas Baron Award from American Institute of Chemical Engineers, and the Top 100 Most Influential Engineers in Australia. He was elected to Fellow of the Australian Academy of Technological Sciences and Engineering in 2004, and Australian Academy of Science in 2011, and Foreign Member of Chinese Academy of Engineering in 2017.

Keynote Speakers

Prof. Wei Ge

Institute of Process Engineering, Chinese Academy of Sciences

Prof. Daniel Holland

University of Canterbury

Prof. Shu-san Hsiau

National Central University

Prof. Shunying Ji

Dalian University of Technology

Prof. Hsiu-Po Kuo National Taiwan University

Prof. Kun Luo

Zhejiang University

Prof. Hiroshi Nogami Tohoku University

Prof. Mikio Sakai The University of Tokyo

Prof. Yanbai Shen Northeastern University

Prof. Arash Tahmasebi

University of Newcastle

Prof. Yuanqiang Tan Huaqiao University

Prof. Junichi Tatami

Tokyo Institute of Technology

Prof. Chiharu Tokoro

Waseda University

Prof. Haigang Wang

Institute of Engineering Thermophysics, Chinese Academy of Sciences

Prof. Junwu Wang

China University of Petroleum-Beijing

A/Prof. Meng Wai Woo

University of Auckland

Prof. Hongwei Wu

Curtin University

Program at a Glance

	T1. Modelling and simulation
	T2. Modelling and simulation of multiphase flow
	T3. Gas-solid flow: microscopic to macroscopic
	T4. Characterization & evaluation and control of particle dispersions
	T5. Powder handling: flow, mixing, and compaction
	T6. Particle synthesis and functionalization
Technical session	T7. Particle technology in low carbon metallurgy & recycling industries
56551011	T8. Aerosol & interfacial science of particle
	T9. Particle technology for medical and pharma
	T10. Particle technology for energy and power sources
	T11. Recycling and waste management
	T12. Frontiers in powder technology
	T13. Special session for ARC hub for SPDC
	P1. Female in powder technology panel discussion
Panel discussion	P2. Grant writing panel discussion
	P3. ECR in powder technology panel discussion
Poster session	PS1 - PS11

	Program at a Glance																
Date	Slot	Technical session													Pane	el discu	ssion
Date	3101	T1	Т2	тз	T 4	Т5	Т6	Т7	Т8	Т9	Т10	T11	T12	T13	P1	P2	P3
1 Dec. (Sun)	15:00-18:00					Pre-re	egistratio	n and w	elcom	e rece	ption (1	7:00)					
	8:10-8:20						Ackno	wledger	nent o	f Cou	ntry						
	8:20-8:50						Speake	Op r: Prof.	ening <mark>Robin</mark>	Batter	rham						
	8:50-9:00						(Confere	nce Ph	oto							
	9:00-9:35		Plenary Lecture 1														
	9:35-10:10	Plenary Lecture 2															
	10:10-10:30	Coffee Break															
2 Dec. (Mon)	10:30-12:10	Whiteley 2	Whiteley 1				Lindsay					Boyd	Hart				
	12:10-13:15	Lunch															
	13:15-13:50							Plenary	Lectu	re 3							
	13:50-14:25							Plenary	Lectu	re 4							
	14:25-14:50							Coffe	e Brea	k							
	14:50-15:50)A/hitalay 2) A/bitalov 1				Lindoo						Hart		Boyd		
	15:50-18:00	Whiteley 2	Whiteley 1				Lindsay						Hart	Boyd			

Program at a Glance

Date	Slot	Technical session													Pan	el discus	sion
Date	510t	T1	Т2	тз	Т4	Т5	Т6	Т7	т8	т9	т10	T11	Т12	Т13	P1	P2	P3
	8:45-9:20						P	enary Lectu	re 5								
	9:20-9:55						P	enary Lectu	re 6								
	9:55-10:15							Coffee Brea	ak								
	10:15-12:00	Whiteley 2	Whiteley 1			Lindsay						Boyd					
	12:00-13:15	Lunch															
3 Dec. (Tue)	13:15-13:50	Plenary Lecture 7															
(Tue)	13:50-14:25	Plenary Lecture 8															
	14:25-14:50							Coffee Brea	ak								
	14:50-16:30		Whiteley 1		Boyd	Lindsay		Whiteley 2									
	16:30-18:00		willceley 1		воуч			vvniteley z								Lindsay	
	18:45-21:30			Speal	cers: Pro	of. Julien E		rink and Gal of. Cordelia			Prof. S	Satoru V	Watan	0			

Program at a Glance

	Slot	Technical session											Panel discussion				
Date	5100	Т1	Т2	ТЗ	Т4	Т5	Т6	Т7	Т8	Т9	Т10	T11	T12	Т13	P1	P2	P3
	8:45-9:20		Plenary Lecture 9														
	9:20-9:55		Plenary Lecture 10														
4 Dec.	9:55-10:55		Coffee Break + Poster Session														
(Wed)	10:55-12:40			Boyd					Whiteley 2	Whiteley 1	Lindsay						Hart
	12:40-13:00								Clo	sing Ceremony	,						
	13:00-14:00									Lunch							

Plenary Lecture

(Venue: Whiteley)

> 2nd December, Monday

- * Morning plenary session (Chair: Prof. Yansong Shen & Prof. Debra Bernhardt)
 - Plenary Lecture 1 (Prof. Jinghai Li)

Time: 9:00-9:35

• Plenary Lecture 2 (Prof. Rose Amal)

Time: 9:35-10:10

- * Afternoon plenary session (Chair: Prof. Alex Yip & Prof. Rose Amal)
 - Plenary Lecture 3 (Prof. Hidehiro Kamiya)

Time: 13:15-13:50

• Plenary Lecture 4 (Prof. Raffaella Ocone)

Time: 13:50-14:25

- > 3rd December, Tuesday
 - **Solution** Morning plenary session (Chair: Prof. Hidehiro Kamiya & Prof. Rajesh Dave)
 - Plenary Lecture 5 (Prof. Aibing Yu)

Time: 8:45-9:20

• Plenary Lecture 6 (Prof. Liejin Guo)

Time: 9:20-9:55

- * Afternoon plenary session (Chair: Prof. Aibing Yu & Prof. Gus Nathan)
 - Plenary Lecture 7 (Prof. Kevin Galvin)

Time: 13:15-13:50

• Plenary Lecture 8 (Prof. Rajesh Dave)

Time: 13:50-14:25

- > 4th December, Wednesday
 - * Morning plenary session (Chair: Prof. Kevin Galvin & Prof. Raffaella Ocone)
 - Plenary Lecture 9 (Prof. Debra Bernhardt)

Time: 8:45-9:20

• Plenary Lecture 10 (Prof. Gus Nathan)

Time: 9:20-9:55

Technical Session

T1. Modelling and simulation

Chairs: Satoru Watano, Daniel Holland, Hao Zhang, Kuang C. Lin, Shuai Wang, Yiran Liu

Date	Session Chair	Slot	Venue: Whiteley 2
			Keynote:
		10:30-10:50	Cutting-edge discrete element methodologies for digital twin
			integration
			(Mikio Sakai*)
			Invited:
		10:50-11:10	Numerical prediction on frictional characteristics of binary
		10.50-11.10	mixtures consisting of flexible cylindrical particles and rigid spheres
	Kuang C. Lin, Yiran Liu		(Yanping Zhu, Xiwen Mu, Pengyue Guo, Hao Zhang [*])
			A study on the dynamics of steel frames with damping
		11:10-11:30	particles
			(Yun-Chi Chung [*] , Chun-Cheng Yang)
			Coarse grained DEM with rolling resistance and particle size
		11:30-11:50	distributions
		1.000 1.000	(Kimiaki Washino [*] , Yuze Hu, Ei L. Chan, Jun-ichi Watanabe,
			Masahiro Takezawa, Takuya Tsuji, Toshitsugu Tanaka)
		11.50 12.10	CPFD prediction of coal-ammonia co-firing in a 550 MWe
		11:50-12:10	USC boiler for carbon-free power generation (Joonwoo Kweon , Byoung-Hwa Lee, Chung-Hwan Jeon [*])
2 Dec.		12:10-13:15	Lunch
(Mon)		13:15-13:50	Plenary 3
		13:50-14:25	Plenary 4
		14:25-14:50	Coffee break
			Keynote:
		14:50-15:10	Characterisation of granular flows using MRI
			(Maral Mehdizad, Daniel Clarke, Petrik Galvosas, Daniel Holland *)
			Invited:
		15:10-15:30	CFD-DEM model development and applications in
		13.10 13.50	polydisperse solid-fluid systems
	C eterry		(Zhouzun Xie , Yansong Shen [*])
	Satoru		Invited:
	Watano,	15:30-15:50	2-D simulations of fibrous particle penetration through mesh
	Hao Zhang	15.50-15.50	screens: a hybrid lattice-Boltzmann Lagrangian method (Thanh-Phat Duong, Yen-Hsi Li, Sheng-Yao Chou, Hairong Tao,
			(Thann-Fhat Duolig, Ten-Fisi Li, Sheng-Tao Chou, Hairong Tao, Kuang C. Lin*)
			Super-quadric CFD-DEM-VOF modelling of gas-solid-liquid
		15:50-16:10	
			systems
		15.50-10.10	(Xinxin Tang , Yansong Shen [*])
		16:10-16:30	-

			The efficient calibration and industrial application of discrete element method
		16:30-16:50	(Ben Jenkins [*] , A.L. Nicuşan, A. Neveu, G. Lumay, F. Francqui, J.P.K. Seville, C.R.K. Windows-Yule)
		16:50-17:10	Evaluation and correction of systematic errors in unsteady cavitation flow visualization experiments (Longhao Xiang , Songying Chen [*])
		17:10-17:30	Accurate and efficient realization of stress jump condition in the IB-LBM modelling of flow around and through porous bodies (Xiaowen Liu [*] , Qingang Xiong)
		17:30-17:50	A SPH-DEM-FEM coupled model for non-regular particle- fluid-structure interactions based on geometric solid-liquid boundary condition (Jie Wu , Lu Liu, Shunying Ji [*])
		10:15-10:35	Keynote: Discrete element methods for largely deformed granular materials with arbitrary morphologies (Shunying Ji)
		10:35-10:55	Invited: GPU-accelerated CFD-DEM modeling of gas-solid reacting flow with complex geometry (Dazhao Gou, Yansong Shen*)
3 Dec. (Tue)	Daniel Holland, Shuai Wang	10:55-11:15	Influence of the calculation method of liquid bridge force model on DEM simulation of wet powder behavior (Tomotaka Otsu , Hideya Nakamura [*] , Shuji Ohsaki, Satoru Watano)
		11:15-11:35	Measurement on the plane strain deformation of sand based on digital image correlation technology and its DEM numerical simulation (Xiaoxia Guo [*] , Pengpeng Wang)
		11:35-11:55	Numerical simulation of the evolution of the funicular liquid bridge in a three-particle system (Fengjie Yao, Yinyi Xue, Di Wu, Liu Liu, Ping Zhou, Dongling Wu *)

T2. Modelling and simulation of multiphase flow

Chairs: Junwu Wang, Junichi Tatami, Wei Ge, Arash Tahmasebi, Haigang Wang, De-Hao Tsai, Hiroshi Nogami, Xiaobing Yu

Date	Session Chair	Slot	Venue: Whiteley 1
			Keynote:
		10:30-10:50	Two-phase flow analysis on particle motion in blast
		10:30-10:50	furnace raceway
			(Hiroshi Nogami *, Ryusei Matsuda, Shungo Natsui)
			Invited:
		10:50-11:10	POD-based reduced-order model for dense particulate
			flow
			(Shuai Wang [*] , Kun Luo, Jianren Fan)
	lunwu Wang		Invited:
	Junwu Wang, Junichi Tatami	11:10-11:30	Pyrolysis behavior of thermally thick biomass particles: A
		11.10-11.50	modelling study
			(Xiaoke Ku [*] , Jin Wang)
			Impact of flow on the distribution of particle agglomerate
		11:30-11:50	impurities and the development of an associated model
			(Yiting Xiao , Zhengbin Pan, Bo Kong [*])
			CFD analysis of raceway dynamics and emission control
		11:50-12:10	with COG and RCOG injection in an ironmaking blast
		11.30-12.10	furnace
			(Ehsan Farajzadehdevin, Yuting Zhuo, Yansong Shen*)
		12:10-13:15	Lunch
2 Dec.		13:15-13:50	Plenary 3
(Mon)		13:50-14:25	Plenary 4
		14:25-14:50	Coffee break
			Keynote:
		14:50-15:10	Physics-informed dynamic mode decomposition for short-
			term and long-term prediction of gas-solid flows
			(Dandan Li, Bidan Zhao, Shuai Lu, Junwu Wang *)
			Invited:
		15:10-15:30	Lattice Boltzmann method for modeling gas-solid
			fluidization
			(Limin Wang [*] , Wei Ge)
	Hiroshi Nogami,		Invited:
	Arash Tahmasebi	15:30-15:50	The fluctuating characteristics of particle flow during silo
			discharge
			(Xiaoxing Liu [*] , Dancheng Zhang, Xiaodong Yang, Hui Guo)
			Collaborative modelling of gas-solid reacting flow in a fuel
		15:50-16:10	reactor equipped with process controllers in chemical
			looping combustion
			(Guoyin Yu, Yuting Zhuo, Shuyue Li, Yansong Shen*)
		16:10-16:30	Application study on a coarse-grained DEM-CFD to a wet bead mill simulation
			(Yuki Tsunazawa [*] , Mikio Sakai)
			(TUKI I SUNAZAWA, MIKIO SAKAI)

16:30-16:50 VOF-DEM investigation of the wet grinding process in SAG mill 16:30-16:50 SAG mill 16:30-16:50 (Qixuan Zhu, Yuqing Feng", Peter Witt, Warren Bruckard Runyu Yang) 16:50-17:10 Prediction of flow through packed beds using machine learning 16:50-17:10 Research on drag force of bubble swarms based on dire numerical simulation 17:10-17:30 Numerical simulation 17:30-17:50 Vefnong Li, Fan Duan, Xiao Chen, Qiang Zhou") Diffusion and dissolution of oil droplet in supercritical water Vegnote: 10:15-10:35 Intelligent virtual process engineering: modelling, computing and analysing (Haolei Zhang, Aiqi Zhu, Ji Xu, Wei Ge") Haigang Wang, De-Hao Tsai 10:35-10:55 Haigang Wang, De-Hao Tsai 10:55 110.55
16:30-16:50 (Qixuan Zhu, Yuqing Feng', Peter Witt, Warren Bruckard Runyu Yang) 16:50-17:10 Prediction of flow through packed beds using machine learning (Sagar G. Nayak, Hariprasad Kodamana, Prapanch Nair') 16:50-17:10 Research on drag force of bubble swarms based on dire numerical simulation (Zhendong Li, Fan Duan, Xiao Chen, Qiang Zhou') 17:10-17:30 Diffusion and dissolution of oil droplet in supercritical water (Qiuyang Zhao, Lichen Zheng, Xuetao Wang, Yu Dong, Liejin Guo') 10:15-10:35 Intelligent virtual process engineering: modelling, computing and analysing (Haolei Zhang, Aiqi Zhu, Ji Xu, Wei Ge') 10:35-10:55 Invited: Development of advanced models for blast furnace ironmaking: analysis of operational dynamics and proces optimization (Xiaobing Yu, Yansong Shen') Haigang Wang, De-Hao Tsai Towards pore-scale simulation of multiphase flows in
Runyu Yang) Runyu Yang) 16:50-17:10 Prediction of flow through packed beds using machine learning 16:50-17:10 (Sagar G. Nayak, Hariprasad Kodamana, Prapanch Nair') 17:10-17:30 Research on drag force of bubble swarms based on dire numerical simulation 17:10-17:30 Diffusion and dissolution of oil droplet in supercritical water 17:30-17:50 Qiuyang Zhao, Lichen Zheng, Xuetao Wang, Yu Dong, Liejin Guo*) 10:15-10:35 Intelligent virtual process engineering: modelling, computing and analysing (Haolei Zhang, Aiqi Zhu, Ji Xu, Wei Ge*) 10:35-10:55 Invited: 10:35-10:55 Development of advanced models for blast furnace ironmaking: analysis of operational dynamics and proces optimization Haigang Wang, De-Hao Tsai Towards pore-scale simulation of multiphase flows in
Prediction of flow through packed beds using machine learning (Sagar G. Nayak, Hariprasad Kodamana, Prapanch Nair*) Research on drag force of bubble swarms based on dire numerical simulation (Zhendong Li, Fan Duan, Xiao Chen, Qiang Zhou*)17:10-17:30Diffusion and dissolution of oil droplet in supercritical water (Qiuyang Zhao, Lichen Zheng, Xuetao Wang, Yu Dong, Liejin Guo*)17:30-17:50Keynote: Intelligent virtual process engineering: modelling, computing and analysing (Haolei Zhang, Aiqi Zhu, Ji Xu, Wei Ge*)10:15-10:3510:35-10:55Haigang Wang, De-Hao Tsai10:35-10:55Haigang Wang, De-Hao TsaiTowards pore-scale simulation of multiphase flows in
16:50-17:10 learning 16:50-17:10 learning (Sagar G. Nayak, Hariprasad Kodamana, Prapanch Nair*) Research on drag force of bubble swarms based on dire 17:10-17:30 numerical simulation 17:30-17:50 (Zhendong Li, Fan Duan, Xiao Chen, Qiang Zhou*) 17:30-17:50 Diffusion and dissolution of oil droplet in supercritical water (Qiuyang Zhao, Lichen Zheng, Xuetao Wang, Yu Dong, Liejin Guo*) 10:15-10:35 10:15-10:35 Intelligent virtual process engineering: modelling, computing and analysing (Haolei Zhang, Aiqi Zhu, Ji Xu, Wei Ge*) 10:35-10:55 10:35-10:55 ironmaking: analysis of operational dynamics and proces optimization (Xiaobing Yu, Yansong Shen*) Covards pore-scale simulation of multiphase flows in
Image: Heat State
17:10-17:30Research on drag force of bubble swarms based on direc numerical simulation (Zhendong Li, Fan Duan, Xiao Chen, Qiang Zhou")17:30-17:50Diffusion and dissolution of oil droplet in supercritical water (Qiuyang Zhao, Lichen Zheng, Xuetao Wang, Yu Dong, Liejin Guo")10:15-10:3510:15-10:3510:15-10:35Intelligent virtual process engineering: modelling, computing and analysing (Haolei Zhang, Aiqi Zhu, Ji Xu, Wei Ge))10:35-10:5510:35-10:55Haigang Wang, De-Hao Tsai10:35-10:55Haigang Wang, De-Hao TsaiTowards pore-scale simulation of multiphase flows in
17:10-17:30numerical simulation (Zhendong Li, Fan Duan, Xiao Chen, Qiang Zhou*)17:30-17:50Diffusion and dissolution of oil droplet in supercritical water (Qiuyang Zhao, Lichen Zheng, Xuetao Wang, Yu Dong, Liejin Guo*)10:15-10:3510:15-10:3510:15-10:35Intelligent virtual process engineering: modelling, computing and analysing (Haolei Zhang, Aiqi Zhu, Ji Xu, Wei Ge*)10:35-10:5510:35-10:55Haigang Wang,
Diffusion and dissolution of oil droplet in supercritical water (Qiuyang Zhao, Lichen Zheng, Xuetao Wang, Yu Dong, Liejin Guo*)10:15-10:35Intelligent virtual process engineering: modelling, computing and analysing (Haolei Zhang, Aiqi Zhu, Ji Xu, Wei Ge*)10:35-10:55Invited: Development of advanced models for blast furnace ironmaking: analysis of operational dynamics and proces optimization (Xiaobing Yu, Yansong Shen*)Haigang Wang, De-Hao TsaiTowards pore-scale simulation of multiphase flows in
Water (Qiuyang Zhao, Lichen Zheng, Xuetao Wang, Yu Dong, Liejin Guo*)10:15-10:35Keynote: Intelligent virtual process engineering: modelling, computing and analysing (Haolei Zhang, Aiqi Zhu, Ji Xu, Wei Ge*)10:35-10:55Invited: Development of advanced models for blast furnace ironmaking: analysis of operational dynamics and proces optimization Towards pore-scale simulation of multiphase flows in
17:30-17:50 (Qiuyang Zhao, Lichen Zheng, Xuetao Wang, Yu Dong, Liejin Guo*) 10:15-10:35 (Qiuyang Zhao, Lichen Zheng, Xuetao Wang, Yu Dong, Liejin Guo*) 10:15-10:35 Intelligent virtual process engineering: modelling, computing and analysing (Haolei Zhang, Aiqi Zhu, Ji Xu, Wei Ge*) 10:35-10:55 Invited: 10:35-10:55 Development of advanced models for blast furnace ironmaking: analysis of operational dynamics and process optimization Haigang Wang, De-Hao Tsai Towards pore-scale simulation of multiphase flows in
(Qiuyang Zhao, Lichen Zheng, Xuetao Wang, Yu Dong, Liejin Guo*) 10:15-10:35 10:15-10:35 10:15-10:35 Intelligent virtual process engineering: modelling, computing and analysing (Haolei Zhang, Aiqi Zhu, Ji Xu, Wei Ge*) Invited: 10:35-10:55 Invited: Development of advanced models for blast furnace ironmaking: analysis of operational dynamics and proces optimization Haigang Wang, De-Hao Tsai Towards pore-scale simulation of multiphase flows in
Keynote:10:15-10:35Intelligent virtual process engineering: modelling, computing and analysing (Haolei Zhang, Aiqi Zhu, Ji Xu, Wei Ge*)10:35-10:55Invited: Development of advanced models for blast furnace ironmaking: analysis of operational dynamics and proces optimization (Xiaobing Yu, Yansong Shen*)Haigang Wang, De-Hao TsaiTowards pore-scale simulation of multiphase flows in
10:15-10:35Intelligent virtual process engineering: modelling, computing and analysing (Haolei Zhang, Aiqi Zhu, Ji Xu, Wei Ge*)10:35-10:55Invited: Development of advanced models for blast furnace ironmaking: analysis of operational dynamics and proces optimization (Xiaobing Yu, Yansong Shen*)Haigang Wang, De-Hao TsaiTowards pore-scale simulation of multiphase flows in
10:15-10:35 computing and analysing (Haolei Zhang, Aiqi Zhu, Ji Xu, Wei Ge*) Invited: Invited: 10:35-10:55 Development of advanced models for blast furnace ironmaking: analysis of operational dynamics and proces optimization Haigang Wang, De-Hao Tsai (Xiaobing Yu, Yansong Shen*)
Computing and analysing (Haolei Zhang, Aiqi Zhu, Ji Xu, Wei Ge*)Invited:10:35-10:55Haigang Wang, De-Hao TsaiDevelopment of advanced models for blast furnace ironmaking: analysis of operational dynamics and proces optimization (Xiaobing Yu, Yansong Shen*)De-Hao Tsai
Invited:10:35-10:55Haigang Wang, De-Hao TsaiDevelopment of advanced models for blast furnace ironmaking: analysis of operational dynamics and proces optimization (Xiaobing Yu, Yansong Shen*) Towards pore-scale simulation of multiphase flows in
Development of advanced models for blast furnace ironmaking: analysis of operational dynamics and proces optimizationHaigang Wang, De-Hao Tsai(Xiaobing Yu, Yansong Shen*) Towards pore-scale simulation of multiphase flows in
10:35-10:55ironmaking: analysis of operational dynamics and proces optimizationHaigang Wang, De-Hao Tsai(Xiaobing Yu, Yansong Shen*)Towards pore-scale simulation of multiphase flows in
Haigang Wang, (Xiaobing Yu, Yansong Shen*) De-Hao Tsai Towards pore-scale simulation of multiphase flows in
Haigang Wang, De-Hao Tsai(Xiaobing Yu, Yansong Shen*)Towards pore-scale simulation of multiphase flows in
De-Hao Tsai Towards pore-scale simulation of multiphase flows in
10:55-11:15 porous media
(Zhisong Ou [*] , Qiang Xue)
A corrected solid stress closure considering the effect of 11:15-11:35 the wall boundary in gas-particle fluidized bed
· · · · · · · · · · · · · · · · · · ·
(Shouzheng Yuan, Qiang Zhou [*]) Analysis of simulated metal powder distribution in new
11:35-11:55 design DED nozzle out flow field
3 Dec. (Bing-zhi Wang, Li-Tsung Sheng, Shu-San Hsiau [*])
(Tue) 12:00-13:15 Lunch
13:15-13:50 Plenary 7
13:50-14:25 Plenary 8
13:50-14:25 Plenary 8 14:25-14:50 Coffee break Keynote: Invostigation the gas solids two phase flows in fluidised
13:50-14:25 Plenary 8 14:25-14:50 Coffee break Keynote: Keynote:
13:50-14:25 Plenary 8 14:25-14:50 Coffee break Keynote: 14:50-15:10 Investigation the gas-solids two-phase flows in fluidised
13:50-14:25 Plenary 8 14:25-14:50 Coffee break 14:25-14:50 Keynote: 14:50-15:10 Investigation the gas-solids two-phase flows in fluidised bed with different scale based on MP-PIC approach
13:50-14:25 Plenary 8 14:25-14:50 Coffee break 14:25-14:50 Keynote: 14:50-15:10 Investigation the gas-solids two-phase flows in fluidised bed with different scale based on MP-PIC approach (Haigang Wang) Invited: Numerical simulation of the decarboxylation process of the decarboxylatio
13:50-14:25 Plenary 8 14:25-14:50 Coffee break 14:25-14:50 Keynote: 14:50-15:10 Investigation the gas-solids two-phase flows in fluidised bed with different scale based on MP-PIC approach (Haigang Wang) 15:10-15:30 Invited: 15:10-15:30 powdered CaCO ₃ in the pilot jet flame
13:50-14:25 Plenary 8 14:25-14:50 Coffee break 14:25-14:50 Keynote: 14:50-15:10 Investigation the gas-solids two-phase flows in fluidised bed with different scale based on MP-PIC approach (Haigang Wang) 15:10-15:30 Invited: 15:10-15:30 powdered CaCO ₃ in the pilot jet flame (Susumu Tsuchiya, Masaya Muto*, Yuta Umeno, Takayuki
13:50-14:25 Plenary 8 14:25-14:50 Coffee break 14:25-14:50 Keynote: 14:50-15:10 Investigation the gas-solids two-phase flows in fluidised bed with different scale based on MP-PIC approach (Haigang Wang) 15:10-15:30 Invited: 15:10-15:30 Numerical simulation of the decarboxylation process of powdered CaCO ₃ in the pilot jet flame (Susumu Tsuchiya, Masaya Muto*, Yuta Umeno, Takayuki Nishiie, Noriaki Nakatsuka, Fumiteru Akamatsu, Ryoichi Kuro
13:50-14:25 Plenary 8 14:25-14:50 Coffee break 14:25-14:50 Keynote: 14:50-15:10 Investigation the gas-solids two-phase flows in fluidised bed with different scale based on MP-PIC approach (Haigang Wang) 15:10-15:30 Invited: 15:10-15:30 Numerical simulation of the decarboxylation process of powdered CaCO ₃ in the pilot jet flame (Susumu Tsuchiya, Masaya Muto*, Yuta Umeno, Takayuki Nishiie, Noriaki Nakatsuka, Fumiteru Akamatsu, Ryoichi Kuro Invited: Invited:
13:50-14:25 Plenary 8 14:25-14:50 Coffee break 14:50-15:10 Investigation the gas-solids two-phase flows in fluidised bed with different scale based on MP-PIC approach (Haigang Wang) 15:10-15:30 Invited: 15:10-15:30 Numerical simulation of the decarboxylation process of powdered CaCO ₃ in the pilot jet flame (Susumu Tsuchiya, Masaya Muto*, Yuta Umeno, Takayuki Nishiie, Noriaki Nakatsuka, Fumiteru Akamatsu, Ryoichi Kuro 15:30-15:50 A numerical simulation study of particle flow and reaction
13:50-14:25 Plenary 8 14:25-14:50 Coffee break 14:25-14:50 Keynote: 14:50-15:10 Investigation the gas-solids two-phase flows in fluidised bed with different scale based on MP-PIC approach (Haigang Wang) 15:10-15:30 Invited: 15:10-15:30 Numerical simulation of the decarboxylation process of powdered CaCO ₃ in the pilot jet flame (Susumu Tsuchiya, Masaya Muto*, Yuta Umeno, Takayuki Nishile, Noriaki Nakatsuka, Fumiteru Akamatsu, Ryoichi Kuro Invited: Invited:

		CFD-DEM study of the effect of lump ore on in-furnace
	15:50-16:10	phenomena in an ironmaking blast furnace
	13.30 10.10	(Peng Zhou , Shibo Kuang [*] , Dianyu E, Ruiping Zou, Wenqi
		Zhong, Aibing Yu [*])
		Numerical investigation of motion of a pellet-shaped
	16:10-16:30	particle placed in uniform flow
		(Kenji Tanno *, Toshiaki Fukada)
		Validation study on the coarse graining DEM-CFD
Wei Ge,	16:30-16:50	simulation for large-scale industrial liquid–solid flow
Xiaobing Yu	10:30-10:30	systems
		(Nobutaka Kitsunai , Mikio Sakai)
	16:50-17:10	Numerical study on the dynamic behaviors of shear-
		thinning droplets impacting on a hydrophobic spherical
		surface
		(Jialiang Cai , Jiliang Ma [*] , Xiaoping Chen, Cai Liang)
		A mPOD-based reduced-order modelling approach for fast
	17:10-17:20	gas-solid flow simulations
		(Huiting Chen, Wangyan Li, Jie Bao, Yansong Shen*)
		Super-quadric CFD-DEM study of spout deflection
		behaviour of non-spherical particles in a spout fluidized
	17:20-17:30	bed
		(Zhan Luo , Shuai Wang, Yansong Shen [*])

T3. Gas-solid flow: microscopic to macroscopic

Chairs: Tawatchai Charinpanitkul, Dazhao Gou

Date	Session Chair	Slot	Venue: Boyd
		10:55-11:15	Invited: Simulations of ethylene oxychlorination in a catalyst pellet packed reactor of dual space resolutions (Cheng-En Li, An-Ni Huang, Wan-Yi Hsu, Tsuo-Feng Wang, Hsiu-Po Kuo*)
		11:15-11:35	Invited: Development of a filtered reaction rate model for a non-equimolar reaction (Lingxue Wang, Zheqing Huang, Qiang Zhou [*])
4 Dec.	Tawatchai Charinpanitkul, Dazhao Gou	11:35-11:55	Enhanced powder properties of nano/micro particles enabled by atomic and molecular scale coatings (Fuweng Zhang [*])
(Wed)		11:55-12:15	Mixing/segregation behaviours for density difference binary particle bed in a vibrating fluidized bed (Yoshihide Mawatari [*] , Naoki Iwamura, Yuki Ishiyama)
		12:15-12:25	Insights into the gas-solid hydrodynamics and thermochemical mechanisms in calcium-looping energy storage using CFD-DEM (Hongchuan Jiang , Cai Liang [*])
		12:25-12:35	Numerical simulation on the fluidization-atomic layer deposition of the nanoparticle agglomerates under the scale of agglomerate and fluidized bed (Zuyang Zhang , Daoyin Liu [*])

T4. Characterization & evaluation and control of particle dispersions

Chairs: Shu-San Hsiau, Tatsushi Matsuyama

Date	Session Chair	Slot	Venue: Boyd
3 Dec. (Tue)	Shu-San Hsiau Tatsushi, Matsuyama	14:50-15:10	Keynote: Dispersion and flocculation transition of alumina slurries as temperature changes evaluated by a combined OCT and rheometer system (Junichi Tatami [*] , Miyu Nakamura, Motoyuki lijima, Takuma Takahashi)
		15:10-15:30	Invited: The study of particle size and morphology changes of metal powders on the same shear energy and impaction with DEM simulation (Heekyu Choi*, Khulan Uranchimeg, Amgalan Bor, Kyung Sung Kim)
		15:30-15:50	Invited: Non-parametric evaluation for particle size distribution analysis (Tatsushi Matsuyama)
		15:50-16:10	Photocurable aqueous suspension design for greener additive manufacturing process of alumina ceramics (Motoyuki lijima *, Bohua Ma, Junichi Tatami)
		16:10-16:30	Elucidation of influence of saponification degree of added PVA on internal structural changes during drying of SiO ₂ slurry by operando OCT observation (Hiromasa Kuroda , Junichi Tatami [*] , Motoyuki lijima, Takuma Takahashi)
		16:30-16:50	Investigation of micronization of TSLP single-domain antibody for pulmonary drug delivery (Jingyu Shi , Hao Miao, Zhenbo Tong [*])
		16:50-17:10	Effective prevention of palladium metal particles sintering by histidine stabilization on silica catalyst support (Harry Cahyanto, Xuanming Chen, Frank L. Y. Lam, Ploychanok ladrat, Chularat Wattanakit, Pinit Kidkhunthod, Varinder Singh, Sally Brooker, Shusheng Pang, Jungkyu Choi [*] , Alex C. K. Yip [*])
		17:10-17:30	Automated synthesis of Al-doped ZnO nanoparticles: an online UV-Vis spectroscopy approach (Guohui Yang [*] , Marcel Kévin Jiokeng Dongmo, Thomas Meurer, Hermann Nirschl)
		17:30-17:50	An approach to automated process optimization in mixing using adaptive and dynamic mixing modes (Benedikt Schwarz [*] , Johannes Lindner)

T5. Powder handling: flow, mixing, and compaction

Chairs: Hsiu-Po Kuo, Shunying Ji, Chun-Chung Liao, Zhouzun Xie

Date	Session Chair	Slot	Venue: Lindsay
			Keynote:
		10:15-10:35	The influence of intruder geometry on the segregation
		10:15-10:35	phenomenon in a vibrated particle bed
			(Shu-San Hsiau [*] , Li-Tsung Sheng, Jia-Jung Wu)
		10:35-10:55	Invited:
			Experimental study the combine the effects of density
			and shape on the dynamic properties and segregation
			mechanisms of granular material in a rotating drum
			(Chun-Chung Liao [*] , Zhe-Hao Zhang)
			Prediction and optimization of particulate processes using
	Chun-Chung Liao,	10:55-11:15	physics augmented machine learning approach
	Zhouzun Xie		(Chengbo Liu, Tingting Liu, Kun Hong, Xizhong Chen *)
			PTFE fibrillation by dry powder mixing and its application
		11:15-11:35	to electrode fabrication for all-solid-state battery
		11.15-11.55	(Hideya Nakamura [*] , Shota Miyake, Motoshi Iwao, Shuji
			Ohsaki, Satoru Watano)
		11:35-11:45	The rapid prediction of pulverized coal MILD combustion
			field: CFD + ensemble learning
			(Hang Shu, Wenqi Zhong [*] , Xuejiao Liua, Xi Chen)
			Towards the influence of fluid convection on filtered drag
2.0.4		11:45-11:55	in fluidized gas-particle flows
3 Dec.		12:00-13:15	(Ju Jiang , Xiao Chen, Qiang Zhou [*]) Lunch
(Tue)		13:15-13:50	
			Plenary 7
		13:50-14:25	Plenary 8
		14:25-14:50	Coffee break
			Keynote:
		14:50-15:10	On the cemented carbide powder forming process based
			on the discrete element simulation (Yuanqiang Tan [*] , Chao Liu, Jie Li, Wenqing Zheng)
			Invited:
	Shunying Ji Hsiu-Po Kuo	15:10-15:30	On the electrostatics of granules and granular flows
			(Yanlin Zhao, Jun Yao [*])
		15:30-15:50	Granular mixing and segregation: continuum modelling
			and processes optimization
			(Liuyimei Yang [*] , Xinyu Liu, Qijun Zheng, Aibing Yu)
			Inorganic-organic hybrid porous ceramics using non-firing
		15:50-16:10	solidification and functionalizing starch
			(Kento Ishii, Tetsuo Uchikoshi, Masayoshi Fuji [*])
		16:10-16:30	Effects of dispersants and floc formation on yielding
			phenomena for concentrated silica slurry
			(Tomonori Fukasawa [*] , Tatsuhiko Murakami, Mayuna Oka,
			Yuki Nishimura,
			Toru Ishigami, Kunihiro Fukui)

T6. Particle synthesis and functionalization

Chairs: Cordelia Selomulya, Ziguang Zhao, Yanbai Shen, Masaya Muto

Date	Session Chair	Slot	Venue: Lindsay
			Keynote:
		10:30-10:50	High sensitive and selective H ₂ sensors based on
		10.30-10.30	sandwich-structured M _x Sn _y -rGO-SnO ₂ composites
			(Yanbai Shen [*] , Guodong Li, Sikai Zhao, Cong Han)
			Invited:
			Microfluidic-aerosol hyphenated synthesis of metal-
		10:50-11:10	organic framework-derived hybrid catalysts for CO ₂
			utilization
			(Yi-Hsuan Sung, De-Hao Tsai *)
	Cordelia		Functionalization of BTX-derived MWNCTs as a
	Selomulya,		fluorescence sensor hybridized with coumarin for
	Ziguang Zhao		use in metal ion detection
		11:10-11:30	(Weerawut Chaiwat*, Thanchanok Vettavong,
			Pimonpan Inthapat, Phitchawalai Ninthachan, Chawalkul
			Chotmunkhongsin, Sirilak Wangngae, Sutthira Sutthasupa®)
		11:30-11:50	Synthesis and functionalization of carbon black-silica
			hetero-aggregates
		11.50 11.50	(Simon Buchheiser [*] , Hermann Nirschl, Frank Rhein)
		11:50-12:10	Synthesis and gas sensing properties of
			semiconducting metal oxide nanostructures
2 Dec.			(Sikai Zhao [*] , Yanbai Shen, Wenbao Liu)
(Mon)		12:10-13:15	Lunch
		13:15-13:50	Plenary 3
		13:50-14.25	Plenary 4
		14:25-14:50	Coffee break
			Invited:
		14:50-15:10	The role of coating homogeneity for enhanced
			performance in lithium-ion battery cathodes
			(Tomoya Ohno [*] , Jeevan Kumar Padarti, Shigeto Hirai,
			Takeshi Matsuda)
			Biosynthesis of zinc oxide nanoparticle using clove
		15:10-15:30	extract for antimicrobial applications
	Yanbai Shen,	15:10-15:30	extract for antimicrobial applications (Tjokorde Walmiki Samadhi *, Vita Wonoputri,
	Yanbai Shen, Masaya Muto	15:10-15:30	extract for antimicrobial applications (Tjokorde Walmiki Samadhi [*] , Vita Wonoputri, Claritta Sukmalovelina, Intan Subadri)
		15:10-15:30	extract for antimicrobial applications (Tjokorde Walmiki Samadhi [*] , Vita Wonoputri, Claritta Sukmalovelina, Intan Subadri) Enhancing the scalability of metal-organic
			extract for antimicrobial applications (Tjokorde Walmiki Samadhi [*] , Vita Wonoputri, Claritta Sukmalovelina, Intan Subadri) Enhancing the scalability of metal-organic frameworks with copper-crosslinked
		15:10-15:30 15:30-15:50	extract for antimicrobial applications (Tjokorde Walmiki Samadhi [*] , Vita Wonoputri, Claritta Sukmalovelina, Intan Subadri) Enhancing the scalability of metal-organic frameworks with copper-crosslinked carboxymethyl cellulose hydrogel support
			extract for antimicrobial applications (Tjokorde Walmiki Samadhi [*] , Vita Wonoputri, Claritta Sukmalovelina, Intan Subadri) Enhancing the scalability of metal-organic frameworks with copper-crosslinked carboxymethyl cellulose hydrogel support (Paul Kinyanjui Kimani [*] , Chika Takai-Yamashita,
			extract for antimicrobial applications (Tjokorde Walmiki Samadhi [*] , Vita Wonoputri, Claritta Sukmalovelina, Intan Subadri) Enhancing the scalability of metal-organic frameworks with copper-crosslinked carboxymethyl cellulose hydrogel support (Paul Kinyanjui Kimani [*] , Chika Takai-Yamashita, Edwin Madivoli)
		15:30-15:50	extract for antimicrobial applications (Tjokorde Walmiki Samadhi [*] , Vita Wonoputri, Claritta Sukmalovelina, Intan Subadri) Enhancing the scalability of metal-organic frameworks with copper-crosslinked carboxymethyl cellulose hydrogel support (Paul Kinyanjui Kimani [*] , Chika Takai-Yamashita, Edwin Madivoli) Enhanced CO ₂ hydrogenation performance of
			extract for antimicrobial applications (Tjokorde Walmiki Samadhi [*] , Vita Wonoputri, Claritta Sukmalovelina, Intan Subadri) Enhancing the scalability of metal-organic frameworks with copper-crosslinked carboxymethyl cellulose hydrogel support (Paul Kinyanjui Kimani [*] , Chika Takai-Yamashita, Edwin Madivoli)

	16:10-16:30	Electrostatic particle assembly technique for formation of structurally controlled composite granules (Wai Kian Tan [*] , Koki Iwata, Keita Tsuzuki, Go Kawamura, Atsunori Matsuda, Hiroyuki Muto)
	16:30-16:50	Spray drying synthesis of alginate particles for enzyme encapsulation (Yilun Weng)
	16:50-17:10	Novel metal-organic frameworks (MOFs) series: UC-MUFs (Soongseok Yoon , Agung Bagus Pambudi, Daisong Chen, Jin Shang, Shane G. Telfer, Ben Hang Yin, Jungkyu Choi, Alex C. K. Yip [*])
	17:10-17:30	0D-2D heterostructures of SnO ₂ QDs-metallic sulphide nanomaterials for room-temperature NH ₃ sensing (Jinzhou Bai , Yanbai Shen [*] , Sikai Zhao, Cong Han)
	17:30-17:50	Synthesis of SW/MWCNTs from flare gas: a comparative study on catalyst preparation methods and process optimization (Chawalkul Chotmunkhongsin , Paeka Klaitong, Sunisa Watcharasing, Tawatchai Charinpanitkul, Sakhon Ratchahat, Weerawut Chaiwat [*])

T7. Particle technology in low carbon metallurgy & recycling industries

Chairs: Mikio Sakai, Limin Wang

Date	Session Chair	Slot	Venue: Whiteley 2
		14:50-15:10	Keynote: Reactivity and degradation mechanism of metallurgical coke during reaction with H ₂ O and CO ₂ using kinetics modelling and micro-CT analyses (Arash Tahmasebi [*] , Ai Wang, Behnaz Rahmatmand, Salman Khoshk Rish, David Jenkins)
		15:10-15:30	Keynote: Coproducing biochar pellets and green chemicals from pyrolysis of mallee biomass in Western Australia: a techno-economic analysis (Xiangpeng Gao, Hongwei Wu [*])
	Mikio Sakai, Limin Wang	15:30-15:50	Invited: Driving the transformation to hydrogen ironmaking: an experimental vertical shaft H ₂ -DRI reactor facility (Ben Hang Yin [*] , Shaira Mendoza, Chris W. Bumby)
3 Dec.		15:50-16:10	Invited: CFD study of hydrogen injection in blast furnaces: tuyere co-injection of hydrogen and coal (Yiran Liu [*])
(Tue)		16:10-16:30	The reduction kinetic of lump ore by hydrogen (Shuoyang Liu , Helen Tang, Tom Rufford, Geoff Wang, Tim Evans, Xiaodong Ma [*])
		16:30-16:50	Recovery of citric acid-soluble potassium components from biomass combustion bottom ash using both grinding and classification (Fandi Angga Prasetya, Sawa Ishizuka, Tomonori Fukasawa, Toru Ishigami, Kunihiro Fukui [*])
		16:50-17:10	New frontiers for electrostatic separation (Peter M. Ireland [*])
		17:10-17:20	How blast rate variation affects dynamic in-furnace behaviours and energy consumption of an industrial- scale blast furnace: a transient-state CFD study (Jin Xie , Xiaobing Yu, Yansong Shen [*])
		17:20-17:30	A novel technology of co-injecting hydrogen and biomass in blast furnaces for a sustainable carbon- neutral ironmaking (Ming Jiang Gan , Yiran Liu, Yansong Shen [*])

T8. Aerosol & interfacial science of particle

Chairs: Wenjing Sun, Shuang Song

Date	Session Chair	Slot	Venue: Whiteley 2
	Wenjing Sun, Shuang Song 11:33	10:55-11:15	Amino acid-derived polynorbornene: investigating the shift from synthetic polymers to polymer interfaces and interface bridging with multi-wall carbon nanotubes (Sutthira Sutthasupa [*] , Sirilak Wangnage, Sukanya Thisan, Sarawut Kamphune, Apiwat Pankaew, Weerawut Chaiwat)
4 Dec.		11:15-11:35	Al-based model prediction of respiratory deposition distribution of dry powder inhalation formulations (Lixing Zhang , Zhenbo Tong [*] , Aibing Yu)
(Wed)		11:35-11:55	Agglomerate aerosols by ultrasound: its impact on air filter pressure drop (Pengzhan Liu [*] , Xin Zhang, Guicai Liu, Shi Hao Lim, Man Pun Wan, Grzegorz Lisak, Bing Feng Ng)
		11:55-12:15	Seasonal characteristic variations of PM _{2.5} chemical components and implications for cloud condensation nuclei activation properties (Yongwei Lu , Yunkun Chen, Xin Wang [*] , Bo Ren, Biao Li, Eric Lichtfouse, Yueshe Wang [*])

T9. Particle technology for medical and pharma

Chair: Meng Wai Woo, Yuting Zhuo

Date	Session Chair	Slot	Venue: Whiteley 1
4 Dec. (Wed)	Meng Wai Woo, Yuting Zhuo	10:55-11:15	Keynote: Advances in spray drying powders (Meng Wai Woo *)
		11:15-11:35	Invited: Assembly of hybrid nanoparticles via metal coordination for disease Treatment (Zi Sophia Gu [*])
		11:35-11:55	Nasal delivery of encapsulated recombinant ACE2 as a prophylactic drug for SARS-CoV-2 (Alberto Baldelli , Hale Oguzlu, Hui Xin Ong, Daniela Traini)
		11:55-12:15	Inhalable high-loading cannabidiol powders (Waiting Tai , Grace Tsz Yan Yau, Jonathon Carl Arnold, Hak-Kim Chan, Philip Chi Lip Kwok [*])

T10. Particle technology for energy and power sources

Chairs: Xiaoke Ku, Heekyu Choi

Date	Session Chair	Slot	Venue: Lindsay
	Xiaoke Ku, Heekyu Choi	10:55-11:15	Highly stable and pH-universal catalysts for hydrogen evolution reactions (Zhaojun Han *)
4 Dec. (Wed)		11:15-11:35	Numerical study on the carbonation reaction of CaO with supercritical CO ₂ in a fluidized bed reactor for CSP application (Nan Zheng , Shaoxin Chen, Hanqing Liu, Jinjia Wei [*])
		11:35-11:55	Nickel ferrite nanoparticles synthesized by the electrochemical method for energy storage applications (Heru Setyawan [*] , Widiyastuti Widiyastuti, Suci Madhania)
		11:55-12:15	Integration of calcium looping with methane Bi- reforming via the Ni-Pd interface: a combined experimental and DFT study (Zhi Xuan Law , Kun-Han Lin, De-Hao Tsai [*])
		12:15-12:25	lgnition characteristic of coal particle under high pressure (Dongdong Fang , Yuanqiang Duan [*] , Lunbo Duan [*])
		12:25-12:35	Gas penetration and powder compression of powder bed in lock-hopper silo under high pressure dynamic load (Minghao You , Xin Wang, Liang Cai [®])

T11. Recycling and waste management

Chairs: Ben Hang Yin, Xiaoxing Liu, Junichi Ida

Date	Session Chair	Slot	Venue: Boyd
	Ben Hang Yin, Xiaoxing Liu	10:30-10:50	Keynote: Efficient separation technology of spent photovoltaic panels for the circular economy (Chiharu Tokoro *)
		10:50-11:10	Invited: Application of particle technology and materials science to biological wastewater treatment (Junichi Ida [*] , Stella Chan, Kento Nishi, Kiriko Aramoto, Beatriz Durán, Shinichi Akizuki, Pabel Cervantes Avilés, German, Tatsushi Matsuyama)
2 Dec. (Mon)		11:10-11:30	Invited: Multi-scale modelling and simulation of particulate multiphase flow applied in mineral processing (Yuqing Feng [*] , Peter Witt, Phil Schwarz)
		11:30-11:50	Gasification of solid wastes for high-purity hydrogen and syngas production with CO ₂ capture (Xiuping Liao , Soo Jean Park, Yijiao Jiang [*])
		11:50-12:00	Synergistic effect of heavy metals stabilization during the co- processing of contaminated soil in cement kiln (Ming Gao , Lin Li, Xue Liu, Zhipan Ma, Guang Sun, Zhihao Zhou, Bing Li, Lunbo Duan [*])
		12:00-12:10	Design and optimization of oxy-combustion CFB power plant with energy storage system based on particle flow, heat transfer (Xuchen Fu , Yuanqiang Duan, Lunbo Duan [*])
		10:15-10:35	Keynote: A CFD-DEM approach to continuous VOC adsorption in a countercurrent fluidized bed (Wei-Han Jen, Wan-Yi Hsu, Tsuo-Feng Wang, An-Ni Huang [*] , Hsiu-Po Kuo [*])
	Ben Hang Yin, Junichi Ida	10:35-10:55	Invited: Silver recovery from crystalline silicon photovoltaic solar cells using continuous stirred-tank reactors (Shuang Song, Yansong Shen*)
3 Dec. (Tue)		10:55-11:15	Investigation on the behavior and mechanism of low-grade magnesite separation enhanced by polycarboxylic acid grinding aid (Wenbao Liu [*] , Yanbai Shen, Wengang Liu, Sikai Zhao, Qiang Zhao)
		11:15-11:35	Magnetic cleaning of particulate materials on solar panels (Masato Adachi [*] , Ryo Goda)
		11:35-11:55	Novel insights into the microscale modelling of bubble- particle collision efficiency in flotation process (Min Sun , Yuqing Feng [*] , Peter Witt, Phil Schwarz, Baoyu Cui, Junwu Zhou)

T12. Frontiers in powder technology

Chairs: Qiang Zhou, Tomoya Ohno, Kun Luo, Yun-Chi Chung

Date	Session Chair	Slot	Venue: Hart
			Keynote:
		10:30-10:50	Acceleration Algorithms for Modeling Dense Gas-Solid
			Reactive Flows
			(Kun Luo [*])
			Invited:
		10:50-11:10	Numerical Study of hydrogen storage design and
			optimisation
			(Yuting Zhuo, Yansong Shen*)
	Qiang Zhou,		Invited:
	Tomoya Ohno	11:10-11:30	Comparative analysis of Particle density effects on
		11.10-11.50	fluidization in gas-solid fluidized beds
			(Shuyue Li [*] , Yongmin Zhang, Wenjie Wang, Huan Wang)
			DEM study on ellipsoidal particle mixing in an industrial
		11:30-11:50	mixer
			(Shintaro Kajiwara [*] , Mikio Sakai)
			DEM-FEM coupling simulation for improved deformation
		11:50-12:10	prediction in a hot isostatic pressed part
			(Wenqing Tian [*] , Runyu Yang, Cao Cai)
		12:10-13:15	Lunch
		13:15-13:50	Plenary Lecture 3
		13:50-14:25	Plenary Lecture 4
2 Dec.		14:25-14:50	Coffee break
(Mon)			Invited:
			Scaled-up spout fluidized beds for heat release process of
		14:50-15:10	thermochemical particles in solar thermal power
			generation
			(Yuanhe Yue , Weiwei Zhao, Chenzhen Liu, Zhonghao Rao [*])
		15:10-15:30	Invited:
			Application of ironmaking blast furnace transient numerical
			model to study innovative operations for decarbonisation
			(Ziguang Zhao , Yansong Shen [*])
			Invited:
	Kun Luo,		Low temperature CO2 methanation using Ni-Al-Ce-La
	Kun Luo, Yun-Chi Chung	15:30-15:50	Low temperature CO2 methanation using Ni-Al-Ce-La layer double hydroxide catalyst
		15:30-15:50	Low temperature CO2 methanation using Ni-Al-Ce-La layer double hydroxide catalyst (Haftu Gebretsadik Gebreegziabher, Noriaki Sano, Sakhon
		15:30-15:50	Low temperature CO ₂ methanation using Ni-Al-Ce-La layer double hydroxide catalyst (Haftu Gebretsadik Gebreegziabher, Noriaki Sano, Sakhon Ratchahat, Tawatchai Charinpanitkul)
		15:30-15:50	Low temperature CO ₂ methanation using Ni-Al-Ce-La layer double hydroxide catalyst (Haftu Gebretsadik Gebreegziabher, Noriaki Sano, Sakhon Ratchahat, Tawatchai Charinpanitkul) Invited:
			Low temperature CO ₂ methanation using Ni-Al-Ce-La layer double hydroxide catalyst (Haftu Gebretsadik Gebreegziabher, Noriaki Sano, Sakhon Ratchahat, Tawatchai Charinpanitkul) Invited: Numerical study on particle motion and deposition
		15:30-15:50	Low temperature CO2 methanation using Ni-Al-Ce-La layer double hydroxide catalyst (Haftu Gebretsadik Gebreegziabher, Noriaki Sano, Sakhon Ratchahat, Tawatchai Charinpanitkul) Invited: Numerical study on particle motion and deposition characteristics inside the film cooling holes of turbine
			Low temperature CO ₂ methanation using Ni-Al-Ce-La layer double hydroxide catalyst (Haftu Gebretsadik Gebreegziabher, Noriaki Sano, Sakhon Ratchahat, Tawatchai Charinpanitkul) Invited: Numerical study on particle motion and deposition characteristics inside the film cooling holes of turbine blade
			Low temperature CO2 methanation using Ni-Al-Ce-La layer double hydroxide catalyst (Haftu Gebretsadik Gebreegziabher, Noriaki Sano, Sakhon Ratchahat, Tawatchai Charinpanitkul) Invited: Numerical study on particle motion and deposition characteristics inside the film cooling holes of turbine blade (Wenjing Sun*, Jianghan Yu, Yuqiu Zheng, Jingzhou Zhang)
		15:50-16:10	Low temperature CO2 methanation using Ni-Al-Ce-La layer double hydroxide catalyst (Haftu Gebretsadik Gebreegziabher, Noriaki Sano, Sakhon Ratchahat, Tawatchai Charinpanitkul) Invited: Numerical study on particle motion and deposition characteristics inside the film cooling holes of turbine blade (Wenjing Sun [*] , Jianghan Yu, Yuqiu Zheng, Jingzhou Zhang) Multiscale kinetic theory for heterogeneous granular and
			Low temperature CO2 methanation using Ni-Al-Ce-La layer double hydroxide catalyst (Haftu Gebretsadik Gebreegziabher, Noriaki Sano, Sakhon Ratchahat, Tawatchai Charinpanitkul) Invited: Numerical study on particle motion and deposition characteristics inside the film cooling holes of turbine blade (Wenjing Sun*, Jianghan Yu, Yuqiu Zheng, Jingzhou Zhang)

16:30-16:50	Simulation of the biomass gasification process of cubic particles in a fluidized bed using the superquadric method (Jun Xie [*] , Hao Xu, Xinhe Shen)
16:50-17:10	An environmentally friendly depressant in the selective flotation of magnesite and calcite: selective inhibition and adsorption mechanism (Yong Mao , Wengang Liu [*] , Yanbai Shen, Wenbao Liu)
17:10-17:30	Numerical study on the influence of cell size and turbulence on the behavior of slurry particles inside a three dimensional rotating drum (Ikki Adji Dharma [*] , Yun-Chi Chung, Li-Shin Lu, Shu-San Hsiau)
17:30-17:40	Numerical study and parameters investigation of aerosol droplets in aerosol jet printing process (Xiaojing Bai , Minshu Zhan, Qijun Zheng [*] , Aibing Yu [*])
17:40-17:50	Coupling computational fluid dynamics and finite element method (CFD-FEM) for modelling dense particle-fluid flows (Yinghui Wu , Qijun Zheng [*] , Liuyimei Yang, Aibing Yu)

T13. Special session of ARC hub for SPDC

Chairs: Shibo Kuang, Kejun Dong

Date	Session Chair	Slot	Venue: Boyd
		15:50-16:00	Director Welcome
		13.30 10.00	Prof. Aibing Yu
			Invited:
		16:00-16:15	Predicting railway in-train forces from ATO
			measurements - a data-driven approach (Sheng Zhang, Pu Huang, Wenyi Yan *)
			Structure characterisation of active particles and
		16:15-16:30	comparison with granular particles
			(Kejun Dong [*] , Ruizhi Jin, Jigar Modi)
			Invited:
		16:30-16:45	Interaction forces of patchy gold nanoparticles derived
		10.50 10.15	from molecular dynamics simulation
			(Pan Yang, Qinghua Zeng [*] , Kejun Dong, Haiping Zhu)
2.5		16:45-17:00	Invited:
2 Dec. (Mon)	Kejun Dong, Shibo Kuang		Development of low-carbon ironmaking technologies (Shibo Kuang , Aibing Yu)
			Fully-resolved simulation of newtonian and non-
			newtonian particle flows
		17:00-17:10	(Mohammad Fazli [*] , Shibo Kuang, Murray Rudman, Aibing
			Yu)
			Effect of particle shape on tribocharging in horizontal
		17:10-17:20	pneumatic transport
			(Fayuan Huang , Shibo Kuang [*] , Ruiping Zou, Aibing Yu)
			Numerical simulation study of sludge drying process
		17:20-17:30	based on CFD-DEM
			(Gong Li , Hao Zhang [*] , Aibing Yu, Zongyan Zhou)
			For SPDC Hub members only
		17:30-18:00	Hub Annual Meeting Discussions
			Hub Director Conclusions

Panel Discussion

P1. Female in Particle Technology

Time: 14:50-15:50 (2 December, Monday)

Venue: Boyd

Chair: Meng Wai Woo

Panel members: Prof. Chiharu Tokoro, Prof. Raffaella Ocone, A/Prof. Zi Sophia Gu, Dr. Yiran Liu, Prof. Debra Bernhardt, Prof. Cordelia Selomulya

P2. Grant Writing

Time: 16:30-17:50 (3 December, Tuesday)

Venue: Lindsay

Chair: Daniel Holland

Panel members: Prof. Jinghai Li, Prof. Aibing Yu, Prof. Hidehiro Kamiya

P3. Early Career Researcher in Particle Technology

Time: 10:55-12:15 (4 December, Wednesday)

Venue: Hart

Chair: Prof. Hongwei Wu

Panel members: Prof. Rajesh Dave, Prof. Kevin Galvin, Prof. Gus Nathan, Prof. Shunying Ji, Prof. Wei Ge

Poster Session

9:55-10:55

4 December, Wednesday

Code	Authors	Title
PS1-001	Ting Qiao, Shunying Ji*	3D cell-split failure model in polyhedron DEM for modeling breakable granular materials
PS1-002	Kazunori Kadota *, Yuhei Tsugawa, Mikio Yoshida, Yoshiyuki Shirakawa	Predicting liquid-liquid phase separation in small- molecule crystallization using phase-field simulations
PS1-003	Naoki Kishida , Hideya Nakamura [*] , Ohsaki Shuji, Satoru Watano	High speed simulation of powder mixing in bi- disperse particle systems
PS1-004	Zhen Tan [*] , Zhonghua Yu	Valuations of charging efficiency and critical gap under contact electrification model
PS1-005	Haruki Mochizuki *, Kizuku Kushimoto, Junya Kano	ADEM simulation validation for the construction of grinding theory
PS1-006	Kyota Mitsunashi , Shota Yokokawa, Hideya Nakamura*, Naoki Kishida	Granular shear flow criteria for accuracy of coarse- grained DEM
PS1-007	Ryo Miyazawa , Yutaro Takaya, Susumu Gunji, Kenichi Momota, Satoshi Shiina, Kyoko Okuyama, Hidehiro Kamiya, Chiharu Tokoro [*]	Optimization of media size combination and agitator geometry for high grinding efficiency agitated media mill by DEM
PS1-008	Atsushi Omori , Shuji Ohsaki, Hideya Nakamura, Satoru Watano	Numerical analysis on dominant factors affecting flow ability of composite particles
PS1-009	Kinuko Hayashi , Hideya Nakamura [*] , Shuji Ohsaki, Satoru Watano [*]	Sensitivity analysis of DEM parameters on bulk powder properties
PS1-010	Hyung-Tae Kim , Ji-Hwan Lee, Hyeong-Bin Moon, Jin-Wook Lee, Byoung-Hwa Lee, Chung-Hwan Jeon [*]	Simulation research of the impact of pressure on the gasification performance of Pet-Coke slurry in an entrained-flow gasifier
PS1-011	Rezwana Rahman , Haiping Zhu [*] , Yang Xiang, Aibing Yu	A macro-dynamic analysis of the density induced segregation in a rotating drum based on CFD simulation
PS1-012	Kailai Chen , Shibo Kuang [*] , Lulu Jiao, Aibing Yu	Numerical modelling of raw material effects in ironmaking blast furnaces
PS1-013	Yudong Zou [*] , Yaoyu Li, Jie Bao, Runyu Yang	Combined DEM-LSTM-CNN modelling to predict mill load and particle size in ball mills
PS1-014	Sagar G. Nayak [*] , Prapanch Nair, Zhenjiang You, Geoff Wang	Numerical modelling of particle transport and retention in porous media
PS2-001	Xiaodie Guo , Wenjing Zhou [*] , Jinjia Wei	Numerical simulation of immersed tube bubbling fluidized bed in calcium-based thermochemical energy storage system: influence of key parameters

PS2-002	Hainuo Wang, Yumeng Zhang [*] ,	Promotion of particle agglomeration by different
F32-002	Shijun Yan, Wenhao Ding, Pengfei Lv, Bo Wang*	vortex generator angles based on PIV-PDPA experiment
	Guanlong Ren, Qingang Xiong [*] ,	CFD investigation of the structural effects of internal
PS2-003	Fangjun Chen	gas intake on powder conveying performance in fuel
	с. -	supply systems for aerospace engines Mechanical behavior analysis of vertical ocean
PS2-004	Haoyi Zhang, Lu Liu, Shunying Ji [*]	structures based on DEM-FEM-SPH coupling method
PS2-005	Shuaiqi Zhao , Han Huang, Rui Zhang, Kunpeng Zhao, Bofeng Bai [*]	Chemical evolution of reactive particle aggregates in fluids
PS2-006	Yuan Xi [*] , Wanyi Xu	CFD study on reducing microfiltration membrane fouling with hemispherical promoter
PS2-007	Ami Takahashi , Shuji Ohsaki, Hideya Nakamura, Satoru Watano [*]	Numerical simulation of upper airway in sleep apnea
PS2-008	Momoko Sugimoto , Shuji Ohsaki, Hideya Nakamura, Satoru Watano [*] , Keisuke Terada, Kazuhiro Nishimi, Shuji Hasegawa	Simulation of slurry filling in cosmetics manufacturing
PS2-009	Tomoyuki Hirota , Shuji Ohsaki [*] , Hideya Nakamura, Satoru Watano	Elucidation of granulation mechanism of pressure swing granulation: a combined experimental and simulation study
PS2-010	Qing Ye , Shibo Kuang [*] , Peibo Duan, Ruiping Zou, Aibing Yu	A surrogate prediction model for air core prediction of hydrocyclones to stabilize operation
PS2-011	Arata Hashimoto, Mikio Sakai	Numerical simulation on powder die-filling in a rotary tablet press
PS2-012	Chao Chang , Qijun Zheng, Yong Wang [*] , Shibo Kuang [*]	Mass transfer enhancement in liquid-liquid extraction with discrete liquid film flow
PS2-013	Qiang Zheng [*] , Yujie Tian [*] , Wei Wang, Qijun Zheng, Shibo Kuang	An intraparticle model for simulation of biomass conversion: the effect of temperature inhomogeneity on heat capacity, heat transfer, drying and pyrolysis
PS2-014	Dan Xu, Yansong Shen*	CFD-DEM-DPM modelling of fluid-particles-fines reacting flows in blast furnace
PS3-001	Chung-Min Wang , An-Ni Huang, Ruey-Chi Hsu, Tsuo-Feng Wang, Hsiu-Po Kuo [*]	The influences of the inlet and outlet designs on the performances of a cyclone separator
PS3-002	Ju Jiang , Xiao Chen, Qiang Zhou [*]	Towards the influence of fluid convection on filtered drag in fluidized gas-particle flows
PS3-003	Zhang Leilei , Chen Yanxin, Zhao Bo	Numerical simulation study on multi-component gas sulphur reduction of phosphogypsum
PS3-004	Jingyi Chen , Yanxin Chen [*] , Leilei Zhang	Numerical simulation of a secondary separation cyclone separator
PS3-005	Jun Xie [*] , Hao Xu, Xinhe Shen	Simulation of the biomass gasification process of cubic particles in a fluidized bed using the superquadric method
PS3-006	Yu Tian , Lin Jiang, Rongzheng Liu, Youlin Shao, Xu Yang, Bing Liu, Malin Liu [*]	Interaction force analysis in the binary nuclear fuel particle co-fluidization simulations in spouted bed using CFD-DEM method
		- 43 -

PS4-001	Harry Cahyanto, Xuanming Chen, Frank L. Y. Lam, Ploychanok ladrat, Chularat Wattanakit, Pinit Kidkhunthod, Varinder Singh, Sally Brooker, Shusheng Pang, Jungkyu Choi [*] , Alex C. K. Yip [*]	Effective prevention of palladium metal particles sintering by histidine stabilization on silica catalyst support
PS4-002	Kosuke Nakai [*] , Masato Adachi	Effects of a dispersing liquid's property on an electrically induced fluid flow and particle traps in a self-healing wire system
PS4-003	Kenta Kitaumra [*] , Takamasa Mori	Study of particles dispersion change over time for aqueous ceramics slurries
PS4-004	Taeko Semba [*] , Kazuyoshi Yamada, Toshiki Matsuoka, Tsutomu Takahashi	Surface treatments with linear alkyl silane coupling agents and their effect on rheological properties
PS4-005	Shogo Tsutaki , Yoshihiko Yamanoi, Junichi Tatami, Motoyuki Iijima [*]	Design of interparticle photo-cross-linkable pickering emulsions for DLP printing of porous silica components
PS4-006	Yuki Imai , Junichi Tatami, Motoyuki lijima [*]	Evaluation of particle concentration dependent stability of silica slurries by 1H pulsed NMR
PS4-007	Sayaka Yamada , Junichi Tatami, Motoyuki lijima [*]	Design of interparticle photo-cross-linkable slurries treated with silane alkoxides for DLP-3D printing of transparent silica components
PS4-008	Noriko Kanai , Scott A. Willis, Abhishek Gupta, Izuru Kawamura [*] , William S. Price [*]	MRI and NMR evaluations of pickering emulsions stabilized by cellulose nanofibers
PS5-001	Shunsuke Mitsunaga *, Masato Adachi	Effects of particle charge variation on the cleaning performance of an electrodynamic dust shield under ion irradiation
PS5-002	Natsuki Miura , Yusuke Imayoshi, Shuji Ohsaki [*] , Hideya Nakamura, Satoru Watano	Internal structure evaluation during tablet compaction using multiparticle finite element method
PS5-003	Kensuke Kumeda , Hideya Nakamura [*] , Shuji Ohsaki, Satoru Watano, Shohei Fujiwara, Yuji Iwami, Akinori Murao	Relationship between powder rheology of wet iron ore powder and its granule strength
PS5-004	Yurui Wang [*] , Yudong Zou, Runyu Yang	DEM modelling of the effect of triboelectric charging on the mixing of fine powder
PS5-005	Riko Yamazaki , Junichi Tatami [*] , Motoyuki lijima, Shinya Kawaguchi, Naoki Kondo	Spray freeze granulation drying of non-aqueous Si₃N₄ slurry effect of the amount of OA in added PEI-OA complex
PS5-006	Nagatomo Mononobe, Hiroaki Minamisawa [*] , Sakiyori Mononobe, Taizou Uchimura, Masakazu Matsumoto, Shinnosuke Kamei, Hiromichi Asamoto, Keisuke Suzuki, Susumu Takahashi	Preparation of arsenic, boron and radioactive cesium adsorbent powder

PS5-007	Qiuhua Miao , Peng Huang [*] , Runyu Yang, Aibing Yu, Shibo Kuang	Macroscopic mixing and segregation behavior of polydisperse spherocylindrical particle mixtures in rotary drums
PS5-008	Wai Kian Tan [*] , Koki Iwata, Keita Tsuzuki, Go Kawamura, Atsunori Matsuda, Hiroyuki Muto	Graded porous Al_2O_3 fabrication using electrostatic integrated polymethyl methacrylate (PMMA)- Al_2O_3 composite granules
PS5-009	Yun-Chien Lin , An-Ni Huang, Wan-Yi Hsu, Tsuo-Feng Wang, Hsiu-Po Kuo [*]	Preparation of three-dimensional flowability diagrams for powder beds with different caking behaviours
PS6-001	Shumpei Yonetsu , Shota Kitai, Yuto Higuchi, Shunsuke Tanaka [*] , Saki Moriya, Miki Sugita, Takahiko Takewaki	Synthesis of metal-organic framework CALF-20 via mechanochemical route
PS6-002	Yuto Higuchi [*] , Shunsuke Tanaka [*]	Synthesis of gmelinite zeolite particles toward selective CO ₂ recovery
PS6-003	Yan Dai [*] , Yaping Ding, Huahao Wang	Synergistic improvement in gas separation performance of MMMs by orogenic action and strong molecular forces of nano particle
PS6-004	Takahiro Onizuka , Tomohiro Iwasaki [*]	Mechanochemically assisted synthesis of magnetite nanoparticles for the catalytic removal of methylene blue
PS6-005	Chawalkul Chotmunkhongsin, Paeka Klaitong , Sunisa Watcharasing, Tawatchai Charinpanitkul, Sakhon Ratchahat, Weerawut Chaiwat [*]	Conversion of flare gas to SWCNTs: a preliminary study on bimetallic catalyst formulas and synthesis condition
PS6-006	Pimonpan Inthapat, Phitchawalai Ninthachan, Thanchanok Vettavong, Warodom Thepmongkorn, Chawalkul Chotmunkhongsin, Maturada Assawagetmanee, Tawatchai Charinpanitkul, Sakhon Ratchahat, Weerawut Chaiwat [*]	Synergistic effect of heating rates during plastic pyrolysis and Fe-based catalyst supports on synthesis of MWCNTs from HDPE wastes
PS6-007	Naoki Toyama [*] , Eisaku Kimura, Shinosuke Kamei, Masakazu Matsumoto, Shigeki Furukawa	Synthesis of nickel supported on mesoporous silica hollow spheres catalysts and their activity for reduction of p-nitrophenol
PS6-008	Shinnosuke Kamei [*] , Takuya Hasegawa, Shu Yin, Naoki Toyama, Takeshi Takemura, Sigeki Furukawa, Koji Masaoka, Masakazu Matsumoto	Synthesis of calcium carbonate using hard clam (mercenaria mercenaria) shells for a source of calcium-based materials
PS6-009	Masakazu Matsumoto *, Shinnosuke Kamei, Naoki Toyama, Yuzuha Matsuda, Takayoshi Fujii, Yasushi Noda, Koji Masaoka	Synthesis of carbonates by reactive crystallization between Ca \cdot Mg in industrial wastes and CO ₂ - Controlling the crystal qualities with bubble diameter and [Mg ²⁺]/[Ca ²⁺] ratio in bulk solution

PS6-010	Ryo Murayama , Stella Chan On San, Kento Nishi, Tatsushi Matsuyama, Junichi Ida*	Enhancing methane production performance by addition of magnetite nano particle doped powdered activated carbon
PS6-011	Bingke Qin, Yizhu Lei	Thermoelectric properties of CoSb ₃ prepared by solid-state reaction
PS6-012	Zhaopeng Liu [*] , Yizhu Lei [*] , Youming Ni, Wenliang Zhu, Zhongmin Liu	Achieving high syngas/CO ₂ conversion into C ₂ +hydrocarbon species over metal oxide nanoparticles as dual-bed catalyst in tandem
PS7-001	Yuki Hiroshige , Junichi Tatami, Motoyuki lijima [*]	Disassembling silica green bodies photocured from interparticle photo-cross-linkable suspension
PS7-002	Zhou Kun , Mauricio Córdova- Udaeta, Keishi Oyama, Hidehiro Kamiya, Chiharu Tokoro [*] , Masahiro Ito, Kazuhiro, Fujimori, Yoshihiro Iwai, Eisuke Tamura	Reduction of heavy metal content from sewage sludge ash using a Coanda effect-based air classification
PS7-003	Jayden D'Agostin , Junxian Liu, Yanyan Zhao, Yuqing Feng [*]	A CFD study of gas solid flow in a gas cyclone separator for recycling of waste lithium-ion batteries
PS7-004	B. Maisuria [*] , C.Bumby,D. Del Puerto. M.Watson, R. Longbottom, B. Monaghan	Hydrogen reduction of New Zealand titanomagnetite ironsand in a fluidised bed reactor for direct reduced iron production
PS7-005	Yancong Liu [*] , Shibo Kuang, Lulu Jiao, Aibing Yu	Numerical simulation of vanadium titanium magnetite (VTM) BF ironmaking process
PS7-006	Jiayi Wang , Shibo Kuang [*] , Ning Yang [*] , Aibing Yu	Modeling and analysis of the hydrogen reduction in the flash ironmaking process
PS7-007	Yang Fei [*] , Shibo Kuang, Xiaoping Guan, Aibing Yu, Ning Yang	Numerical study on hydrogen-intensive industrial shaft furnaces
PS7-008	Naghmeh Abavi Torghabeh [*] , Peter M. Ireland, Grant B. Webber	A novel hybrid free-fall electrostatic separator
PS7-009	Wenchao Zhang , Heng Zhou [*] , Yifan Hu,Yapu Xing	Numerical simulation of the influence of injection structure on pulverized coal gasification in the dome zone of COREX melter gasifier
PS7-010	Shangming Wang, Yunan Chen, Bin Chen [*]	Polymer characterization and pyrolysis mechanism of end-of-life photovoltaic modules
PS8-001	Alberto Baldelli	Particle engineering: Effective theory for predicting the properties of sprayed products
PS8-002	Po-Yu Lai , Ying-Hsuan Wang, Jen- Huang Huang, De-Hao Tsai [*]	Microfluidic-based controlled synthesis of cross-linked hyaluronic acid nanoparticles using real-time gas- phase electrophoretic analysis
PS8-003	Yuuki Yazawa [*] , Toshihiko Eguchi	Creation of surfactant-free nanopowder emulsions and its interfacial structure.
PS8-004	Yi-Jun Wang , De-Hao Tsai [*] , Chien-Hsun Chen	Investigation of silane chemistry for metal surface modification
PS8-005	Kazuki Koinuma [*] , Kenji Kofu	Generation of acoustic streaming in closed Field with ultrasonic vibration
PS8-006	Yue Zou , Cheng Zhang, Xian Li, Guangqian Luo, Yi Wang, Yu Qiao, Xiaowei Liu [*]	Removal of dibutyl phthalate from organic fractions of condensable particulate matter
		A.C.

PS9-001	Yuichi Tozuka [*] , Yuta Hatanaka, Peiwen Mo, Tero Kämäräinen, Shingo Furukawa, Mai Takase, Shinya Yamanaka, Mitsunobu Doi, Toshio Oguchi, Hiromasa Uchiyama, Kazunori Kadota	Cocrystal preparation of 4-aminosalicylic acid/isoniazid for developing dry powder inhaler formulation of anti-tuberculosis drugs
PS9-002	Yuzuki Nakayama , Tero Kämäräinen, Hiromasa Uchiyama, Kazunori Kadota [*] , Yuichi Tozuka	Design of spray-dried supraparticles containing carvedilol using amyloid nanofibrils as binder modifiers for controlled morphology
PS9-003	Soma Omura , Kazuki Oshima, Shuji Ohsaki [*] , Hideya Nakamura, Satoru Watano	Improvement of drug loading capacity into metal- organic frameworks by electric field application
PS9-004	Tooru Andoh [*] , Ryohei Azuma, Yusuke Nagashige, Minoru Suzuki, Takushi Takata, Yoshinori Sakurai, Hideki Ichikawa	Evaluation of gadolinium biodistribution and tumor- killing effects of surface-modified gadolinium-loaded chitosan nanoparticles for gadolinium neutron capture therapy
PS9-005	Ayumi Ohashi , Shuji Ohsaki [*] , Hideya Nakamura, Satoru Watano	Molecular simulation of multi-drug encapsulation into metal-organic framework with amphiphilic pores
PS9-006	Sora Imanishi , Yuji Sawano, Fumio Kurayama, Yuichi Shibata, Tatsushi Matsuyama, Junichi Ida [*]	pH-sensitive organic-inorganic hybrid capsules using alginate and aminosilane for sustained release of diclofenac sodium
PS9-007	Shiyi Che , Songping Zhang [*] , Minsu Liu [*]	PEG/DEX aqueous two-phase coacervate for efficient IVT reaction, simultaneous mRNA enrichment and long storage
PS9-008	Tooru Andoh [*] , Chinami Kawane, Keigo Nakano, Kosuke Fukushima, Hideki Ichikawa	Preparation of microparticles with coating of poorly water-soluble nanocrystalline drug to improve its dissolution with sugar alcohol
PS10-001	Hanqing Liu , Ziyang Li, Shaoxin Chen, Nan Zheng [*] , Jinjia Wei	Experimental and numerical investigation on heat transfer characteristics in a high-temperature particle/molten salt fluidized bed heat exchanger
PS10-002	Kwangseok Choi , Yuta Endo, Takaaki Mizutani, Kenzo Yanagida	Evaluation of the ignitability of a handheld electrostatic powder spray gun using new spark ignition test apparatus
PS10-003	Motoshi Iwao , Hideya Nakamura [*] , Shuji Ohsaki, Satoru Watano	Hot-melt kneading process of sulfur and porous carbon for all-solid state lithium sulfur batteries
PS10-004	Honami Hanabusa , Toru Joboji [*] , Kizuku Kushimoto, Atsushi Fukuoka, Junya Kano [*]	Solubilization of lignocellulosic biomass by milling with heating
PS10-005	Sunisa Watcharasing , Taradon Piromchart, Yaowamarn Chuminjak, Chakrit Sriprachuabwong	Flare gases carbon nanotubes (CNTs) based electrode of supercapacitor and energy storage applications
PS10-006	Kuandi Wang , Jiannan Li,Tiantian Li [*]	Comb-shaped anion exchange membrane with segmented hydrophilic/hydrophobic side chain

The 9th Asian Particle Technology Symposium

PS10-007	Kai-Po Chang , Chuan-Bin Du, De-Hao Tsai [*]	Ni-Pd bimetallic hybrid catalyst for lower- temperature methane bi-reforming
PS10-008	Ryo Osaki , Shuji Ohsaki [*] , Hideya Nakamura, Satoru Watano	Size control of solid electrolyte particles by spray- drying method
PS10-009	Kunihiro Fukui [*] , Ayaka Tamaru, Fandi Angga Prasetya, Tomonori Fukasawa, Toru Ishigami	Evaluation of the reaction properties of $Ca(OH)_2$ powder and CO_2 at high temperature
PS10-010	Yankai Huang , Xin Yu, Jingji Zhu, Dunxi Yu [*]	Temperature-dependent mineral matter vaporization and aerosol formation during low rank fuel combustion
PS11-001	Shi Liu , Wen Cao, Ruochen Xiong, Libo Lu, Liejin Guo [*]	Behavioral characteristics of nitrogen during supercritical water gasification of biomass
PS11-002	Libo Lu , Wen Cao, Shi Liu, Liejin Guo [*]	Mechanistic insight into the decomposition of Phenyl Vinyl Sulfone in supercritical water
PS11-003	Kenji Kofu [*]	Powder separation using friction reduction and surface deformation with ultrasonic vibration

INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY OF POWDER AND PARTICULATE MATERIALS

To be published Virtual Special Issue APT2024

Advanced Powder Technology

International Journal of Science and Technology of Powder and Particulate Materials Development of Science and Technology of Powder and Particulate Materials

http://www.elsevier.com/locate/apt

IMPACT FACTOR 4.2CITESCORE 9.5

EDITORIAL BOARD

EDITOR-IN-CHIEF MASAYOSHI FUJI JAPAN

APT team consists of over 60 editors from around the world who work together with the excellent Executive Editors to maintain a fair and high level of peer review.

RAJESH N. DAVÉ YONGSHENG HAN USA CHINA

EXECUTIVE EDITORS

GERMANY

RYOICHI KUROSE JAPAN

RAYMOND LAU GIRIDHAR MADRAS SINGAPOLE

INDIA

TOMOYA OHNO **JAPAN**

CORDELIA SELOMULYA JAPAN AUSTRALIA

Advanced Powder Technology covers various areas, but a discussion of powder technology and particulate science is highly required in articles. The discussion should relate to new powder and particulate materials, novel techniques, and innovative processes, especially those having potential practical implications, and should bring new understanding of powder technology. Topics include:

Dynamics and phenomena of powder

Powder and particle characterization

- Production of powder and particulate materials in gases and liquids (nanoparticles, fine ceramics, pharmaceuticals, particle modification, novel functional materials, etc.)
- Powder handling and operations (comminution, storage, transport, granulation, separation, fluidization, etc.)
- Aerosol and colloidal processing
- Measurement and control of powder processes
- Numerical simulation method (CFD, DEM, Monte Carlo method, population balance, etc.)

VIRTUAL SPECIAL ISSUES & ARTICLE COLLECTIONS

INOUIRIES TO EDITORIAL OFFICE

Advanced Powder Technology

JUN OSHITANI

Thank you for your participation!

Contact: apt2024@unsw.edu.au

